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Abstract: The increasing demand for electronic products has led to a surge in end-of-life devices, making efficient recycling

crucial for minimizing environmental impact. However, current recycling processes are often tailored to specific models, making

adaptation to varying devices complex and costly. This paper addresses the challenge of automating electronic device disassembly

using computer vision and action prediction methods. The research explores key components of a robotic disassembly system,

including pose estimation, device classification, rotation estimation, gap detection, and action prediction. High accuracy is

achieved using segmentation models and supervised learning for known devices, while zero-shot classification and data-driven

approaches show promise for handling unseen devices. A large language model (LLM) is introduced for action prediction,

demonstrating its ability to adapt to diverse disassembly tasks with 91% accuracy. The results indicate that generalization across

device models is possible but varies by method. This study provides a framework for developing flexible and robust robotic

systems, paving the way for more sustainable and scalable electronic recycling solutions.
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1. INTRODUCTION

The rapid growth of population and technological ad-

vancement has significantly increased the demand for elec-

trical products, while simultaneously their life cycles have

become shorter [18, 3]. This trend has led to an increase in

end-of-life (EOL) products, with an estimated 44.7 million

tons generated in 2016 alone [1]. Efficient recycling of these

EOL products is crucial to mitigate their environmental im-

pact; however, it is rarely considered during product design.

Disassembly, a critical step in recycling, often proves eco-

nomically unfeasible due to high labour costs, particularly in

developed countries [14].

Robotic automation has the potential to address these eco-

nomic challenges, making disassembly both feasible and ef-

ficient. Yet, the disassembly of electronic devices presents

considerable technical challenges. The variability in device

design, even within the same product family, requires sys-

tems capable of handling diverse disassembly processes. A

robust, automated system must be adaptable to this high vari-

ability to maximize its impact on sustainability and recycling

rates.

This paper examines to what extent the computer vision

and action prediction within the ReconCycle system [27, 23,

22, 10], can generalize to new unseen devices with minimal

or no supervision. Here, generalizability refers to the ability

of the system to disassemble new devices within a specific

product family, even when these devices have not been en-

countered previously. In contrast to conventional industrial

disassembly systems, which are tailored for specific devices,

the ReconCycle system aims to enable flexible reconfigura-

tion to accommodate new devices.

Effective disassembly relies on understanding the phys-
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Fig. 1: Computer vision workflow for action prediction,

with the goal of device disassembly, to be performed by the

ReconCycle workcell.

ical properties of the target device. This research focuses

on four critical computer vision methods to obtain this in-

formation: pose estimation, device classification, component

detection, and gap detection. A knowledge dataset is devel-

oped, encompassing similar devices with annotated descrip-

tions of disassembly actions and reasoning written in human

language descriptions. The dataset is used for improved ac-

tion prediction using a large language model (LLM), where

the LLM predicts high-level actions.



Fig. 2: Examples of HCAs and smoke detectors (excluding variations). Our dataset contains 13 HCAs and 10 smoke detectors.

2. RELATED WORK

Recent research has explored various aspects of disassem-

bly automation, but large-scale industrial adoption remains

limited due to challenges such as managing diverse prod-

uct variants and material conditions. Apple’s robotic system,

Liam [19], uses specialized automation, efficiently disassem-

bling iPhone 6 components for material recovery but lacking

flexibility for broader device handling.

We use action prediction to determine the next disassem-

bly step. To predict actions we need a scene description of

the device and its current state of disassembly. For this we

use computer vision methods in pose estimation, classifica-

tion, and gap detection.

NVIDIA’s Deep Object Pose Estimation (DOPE) [25] is a

one-shot neural network for 6D pose estimation. However,

DOPE faces challenges in bridging the synthetic-to-real-

world gap due to its reliance on entirely synthetic datasets.

Therefore, we research image segmentation models, such as

YOLOv8 [7], in combination with rotation estimation to pro-

vide the necessary pose information, since it offers a straight-

forward path for data annotation and training.

We use ResNet-50 [5] for the device classification task,

and we compare it to CLIP [16], trained on 400 million

image-text pairs for zero-shot classification without fine-

tuning. Radford et al. [16] show that CLIP outperforms

ImageNet trained models in classification tasks, but strug-

gles with fine-grained distinctions, such as differentiating be-

tween visually similar object instances.

Since segmentation models are not able to estimate the ro-

tation of devices, we research models to solve this problem.

For rotation estimation, classical feature matching methods,

such as SIFT [12] have been used, but are outperformed

by modern learning-based approaches like SuperGlue [20].

End-to-end CNN-based models have been applied to rota-

tion estimation problems, typically using regression or cross-

entropy losses for tasks involving natural scenes [8, 26]. We

compare featuring matching and end-to-end CNN models on

our rotation estimation problem.

Determining gaps in a device is useful for removing in-

ternal components by levering them out, possibly once the

screws holding down the components have been removed.

The work of Yildiz et al. [29] on hard drive recycling used

HDBSCAN for clustering point cloud data to find gaps. We

extend on this work and compare it with a segmentation

model on the depth and image data.

Recently, LLMs such as GPT-4 [15] have been used for

action prediction, following from their reasoning ability. For

instance, prompting LLMs with reasoning steps, as proposed

by Wei et al. [28], enhances their ability to generate complex

plans. Shentu et al. [21] propose methods to convert natural

language tasks into executable actions, using strategies like

generating Python function calls, parsing natural language

solutions, or embedding outputs as policy inputs. LLMs have

been combined with classical planners, as in Liu et al. [11],

where LLMs translate tasks into PDDL for classical solvers,

offering a hybrid approach. We investigate LLMs for action

prediction of disassembly actions using retrieval augmented

generation of examples from our knowledge dataset.

3. METHODS

The vision system consists of the vision modules: pose es-

timation in Section 3.1, device classification in Section 3.2,

rotation estimation in Section 3.3, and gap detection for lev-

ering in Section 3.4. The focus of these methods is to pro-

vide a generalizable approach, such that the methods perform

well on new devices with none or minimal retraining. These

methods provide a scene description that is used for action

prediction in Section 3.5, providing a high level action, that

can be implemented by the ReconCycle workcell.

3.1. Device and Components Segmentation

We collected images of 13 HCA types and 10 smoke de-

tector types, see Figure 2, with a total of 4458 labelled im-

ages taken using a combination 2900 × 2900 px RGB im-

ages, 1280× 720 px RGBD images. We created a Synthetic

Dataset Generator Tool to augment our dataset of 4458 im-

ages, to a dataset of 20,000 images.

The images are annotated with masks with the follow-

ing labels: HCA (front, back, back empty), smoke detec-

tor (front, back, insides, insides empty), PCB, PCB covered,

battery, battery covered, internals, plastic clips, screws, and

wires. PCB covered and battery covered indicate partial ob-

struction by plastic while remaining visible.

YOLOv8-Seg is an instance segmentation model built

upon the YOLOv8 object detection framework, sharing a

similar architectural structure. The model demonstrates

state-of-the-art performance across object detection and seg-

mentation benchmarks, while maintaining real-time process-

ing capabilities [24].

The pose estimation problem is constrained to scenarios

where the camera is positioned above the scene, observing

objects of interest on a surface that is perpendicular to the



Fig. 3: Example of relations graph for an HCA and a PCB

with battery. The natural language text representation is:

Component 1: The battery is next to the PCB. Component

2: the internals are next to the battery. The internals and bat-

tery are in the HCA (back).

camera’s view.

The relation graph represents devices and components

within the scene, along with the positional relationships be-

tween them, as shown in Figure 3. This graph is constructed

based on the results of pose estimation. In Section 3.5, the re-

lation graph, translated into natural language text, is utilized

as a component of the prompt for the LLM used in action

prediction.

3.2. Device Classification

The segmentation model from Section 3.1, learns the de-

vice family, but not the specific device type, such that the

segmentation is able to detect unseen devices from the same

family, without needing to retrain the model. Determining

the device type remains a critical requirement; therefore, this

work explores methods for device classification. From the

HCAs and smoke detectors, see Figure 2, and a subset of

the images in Section 3.1, we create an image dataset for the

classification task consisting of 61 classes, including front

and back for each device, with a total of 1694 images.

For device classification, a ResNet-50 convolutional neu-

ral network (CNN) [5] is employed. The performance of

the CNN model is compared to that of the CLIP model [16],

which is utilized for zero-shot image classification.

3.3. Rotation Estimation

The device position is found using the segmentation

model, as described in Section 3.1. The rotation can be found

from the segmentation mask, up to its rotation invariances.

The correct rotation from the invariances can be chosen if

there are other features found by the segmentation model,

but when this is not the case, the device rotation needs to be

estimated separately, see examples in Figure 4.

We use the same dataset as used in the classification task.

We compare an end-to-end CNN model with SuperGlue [20],

a feature matching method, for rotation estimation. To train

our methods on the task of rotation estimation, we generate

Fig. 4: Examples of rotation estimation for smoke detectors.

pairs of images with a ground truth rotation between them,

see Figure 5. We generate these pairs using homographies as

used in SuperPoint [4], but with random rotations in range

[−180◦, 180◦) instead of [−25◦, 25◦) rotations [9].

Fig. 5: Example of pairs for rotation estimation with ground

truth rotation.

Our methods take a pair of images, and estimates the ro-

tation between them. The CNN model takes two images

and extracts feature vectors using ResNet-50 [5] with shared

weights, the output is concatenated, and then passed through

3 linear layers with ReLU. We compare two different loss

functions for learning the rotation angle: regression loss and

binary cross entropy by discretising the space into 36 bins.

We found that by using more bins, the accuracy in rotation

estimation drops.

The SuperGlue model uses SuperPoint [4] as a feature

extractor, and SuperGlue learns to match the features be-

tween the two images. The weights of SuperPoint are frozen,

and we train SuperGlue on our dataset of homography pairs.

From the feature matches on an image pair, we recover the

rotation by fitting a rotation transform to the matched points.

3.4. Gap Detection for Levering

Certain devices require a levering operation for disassem-

bly, which involves inserting a levering tool into a gap and

leveraging the fulcrum effect on the housing to extract inter-

nal components, such as the PCB. A key challenge in this

process is the detection of gaps, which is complicated by

their variable appearance and the need for precise localiza-

tion. To address this, a RealSense camera [17] is utilized to

capture both RGB and depth information, see Figure 6.

We compare two methods for gap detection: a clustering

algorithm, and an instance segmentation model. The first

method to gap detection employs the HDBSCAN clustering

algorithm [2] to segment the depth image into clusters based

on the depth profile. The second method is training the

YOLOv8 segmentation model on labelled images of gaps.



Fig. 6: Example of gap detection. Left: depth image, centre:

HDBSCAN with filtering to find gaps with levering action

(blue arrow), right: YOLOv8 segmentation model.

3.5. Action Prediction

An LLM is used for action prediction, given a query im-

age and results from the vision system. The LLM uses a

data-driven approach to predict the actions, using informa-

tion from a knowledge tree for retrieval augmented genera-

tion (RAG).

The workflow for action prediction using an LLM is

shown in Figure 9 (appendix). Given a query image, the vi-

sion system generates a scene description, which serves as

input for the LLM. The LLM is provided with an objective,

a set of available tools, background information, examples

of similar disassembly actions, and the current disassembly

state. The full prompt is detailed in Appendix C.

To supply the LLM with relevant examples of similar dis-

assembly actions, the input image is compared to images

stored in a knowledge tree. The k-nearest neighbour images,

under the CLIP embedding and the L2 distance, and their

corresponding question-answer (QA) pairs are retrieved and

presented to the LLM. This process enables the LLM to pre-

dict disassembly actions for devices exhibiting similarities to

those stored in the knowledge tree.

As outlined by Wei et al. [28], incorporating reasoning

steps enhances the ability of LLMs to make accurate pre-

dictions. The disassembly action examples provided to the

LLM include reasoning to justify the suggested actions. Fur-

thermore, the LLM is instructed to first reason about the ap-

propriate action and then provide the action in its output.

This approach improves performance compared to scenar-

ios where the model is first asked to provide an action and

subsequently justify it.

The prompt structure for the LLM follows a format sim-

ilar to that proposed by Shentu et al. [21]. It includes the

objective, a list of available actions, relevant background in-

formation, examples retrieved from the knowledge tree, and

question-answer (QA) pairs related to the query image that

the model is tasked with completing. The possible disassem-

bly actions are: turn, move, lever, cut (cutter), and cut (CNC

mill).

In Section 4.5, we compare the LLM-based approach to

a baseline model that uses k-nearest neighbour majority vot-

ing. The comparison evaluates accuracy based on the pro-

portion of correctly predicted actions from a designated test

set.

4. RESULTS

The previous section explained the methods for the vision

and action prediction models. In this section, we present the

corresponding results.

4.1. Segmentation

When using image size input of 1280 px and using the

YOLOv8 P2 model, compared to the 640 px model, the re-

sults for screw class improve from mask mAP@.50-.95. of

0.18 to 0.47. The results of the YOLOv8 1280 px P2 model

are shown in Table 1. For the HCAs and smoke detectors,

the box mAP@.50-.95. is above 0.93, detecting them effec-

tively. On the components including internals, battery, PCB,

and plastic clip the box mAP@.50-.95. is above 0.88.

Table 1: YOLOv8 1280 px P2 results on test set.

Class Instances
Box mAP
@.50-.95

Mask mAP
@.50-.95

all 7209 0.903 0.84

HCA front 429 0.978 0.958
HCA back 414 0.962 0.749
HCA back empty 342 0.94 0.909
smoke det. front 396 0.958 0.947
smoke det. back 416 0.936 0.915
smoke det. insides 393 0.947 0.829
smoke det. insides empty 371 0.945 0.927
internals 530 0.952 0.927
battery 995 0.88 0.823
battery covered 302 0.917 0.875
PCB 862 0.893 0.853
PCB covered 398 0.935 0.917
plastic clip 366 0.946 0.869
wires 593 0.822 0.598
screw 378 0.576 0.468

Table 2: YOLOv8 640 px results on seen and unseen test

set. The seen test set contains classes that are not present in

the unseen set. For a fair comparison, the results shown are

constrained to the classes that are in the unseen test set.

Box mAP Mask mAP
@.50 @.50-.95 @.50 @.50-.95

all 0.94 0.88 0.93 0.79

hcas excl8-10 0.97 0.92 0.96 0.81
unseen 0.91 0.84 0.91 0.73
classes: HCA front, HCA back, HCA back empty, battery, internals,
PCB, PCB covered, plastic clip

hcas excl11-13 0.93 0.85 0.90 0.75
unseen 0.72 0.67 0.71 0.56
classes: HCA front, HCA back, battery, internals, PCB, PCB covered,
plastic clip, HCA back empty, screw

smoke excl7,8 0.86 0.72 0.79 0.65
unseen 0.72 0.62 0.70 0.58
classes: smoke detector front, smoke detector back, screw

smoke excl9,10 0.96 0.94 0.96 0.93
unseen 0.93 0.90 0.93 0.88
classes: smoke detector front, smoke detector back, screw

To assess the model’s generalization capability, multiple

datasets are generated with specific device types excluded.

This approach allows for evaluating the model’s generaliza-

tion performance to unseen in-distribution devices. The all

dataset contains all the devices, see Table 2. The hcas excl(8-

10/11-13) are the datasets with HCAs 8-10 and 11-13 ex-

cluded respectively. Similarly, the smoke excl(7,8/9,10) ex-

cludes smoke detectors 7,8 and 9, 10 respectively.

Overall, see Table 2, the YOLOv8 segmentation model



demonstrates the ability to detect unseen devices that share

similarities with those in the training set. Across all exper-

iments, performance degradation on unseen devices ranges

between 10% and 20%.

4.2. Device Classification

We train the ResNet-50 model from Section 3.2 on

the dataset of devices described, with train/val/test split

1328/183/183. By evaluating the trained model on the test

set we obtain a 99.1% overall accuracy.

We present the results of CLIP for zero-shot classification.

All images from the training set are projected onto their cor-

responding image embeddings, with their associated ground

truth labels. For each test set image, an image embedding

is generated, and the k-nearest neighbours are retrieved from

the training set embeddings. The top-k accuracy is defined

as the proportion of test cases where the correct classification

is included among the retrieved k-nearest neighbours. In Ta-

ble 3 the top-1, top-3 and top-5 accuracy results using CLIP

are shown.

Table 3: Top-k accuracy for all classes, using CLIP

Smoke det. HCA

Top-k All classes back front back front

Top-1 89% 100% 91% 89% 75%

Top-3 98% 100% 100% 99% 90%

Top-5 98% 100% 100% 99% 96%

From the results above, the CNN model outperforms the

CLIP model, but it must be trained, whereas the CLIP model,

with an accuracy of 89% shows promise for zero-shot meth-

ods for classification, especially since the top-3 result gives

an average accuracy over all classes of 98%.

4.3. Rotation Estimation

The CNN model and SuperGlue model are trained on the

same dataset as used for device classification. The seen/un-

seen split is odd numbered/even numbered devices, as in Fig-

ure 2.

First we evaluate both models on our generated homogra-

phies, see Table 4, and second we evaluate the SuperGlue

model on real world rotated devices, see Table 5.

The results in Table 4 show that the SuperGlue model

trained on our dataset of devices with homographies includ-

ing random rotations in range [−180◦, 180◦) outperforms the

pretrained SuperGlue indoor model by orders of magnitude.

Table 4: Rotation error of CNN baseline and SuperGlue

models.

Seen test Unseen test

Models Mean std. Mean std.

CNN rotloss 31.2
◦

24.6
◦

31.4
◦

25.7
◦

CNN binloss (36 bins) 8.2
◦

18.2
◦

14.4
◦

29.9
◦

SuperGlue indoor 43.9
◦

65.9
◦

40.3
◦

58.4
◦

SuperGlue (our dataset) 0.40◦ 0.73◦ 0.46◦ 0.95◦

To evaluate real-world performance, we further test on

real-world perspective and rotation changes, see Table 5.

Poor performance was observed in cases where devices have

many symmetries with little to no features that can guide Su-

perGlue to the correct orientation. The improved perfor-

mance on the back of devices is attributed to the presence of

numerous features that facilitate feature matching.

Table 5: Rotation error of SuperGlue model (our dataset) on

real-world rotated devices. Rotation correct if it is correct to

±10◦.

Setting Accuracy

60 images of smoke detectors 83%

. . . ignoring devices with little to no features 92%

. . . only images with backs of devices 100%

4.4. Gap Detection for Levering

We compare the two models, HDBSCAN and YOLOv8,

on a dataset of RGBD images of HCAs with a 136/61 train/-

val split, with no test set because of the small size of the

dataset. The results of the HDBSCAN clustering method

and the YOLOv8 model on the validation set are shown in

Table 6. The HDBSCAN clustering method is shown to per-

form best on large gaps, however it is generally outperformed

by the YOLOv8 segmentation model.

Table 6: Accuracy for detecting gaps using the HDBSCAN

clustering method and the YOLOv8 segmentation model.

HCA Device

Model 1 3 5 7 8

HBDSCAN 86% 100% 50% 42 % 58%

YOLOv8 RGBD 100% 100% 100% 92% 100%

To evaluate the unseen performance of the YOLOv8

model, we use a dataset of 161 images consisting of HCAs

1, 2.1, 3, 4, 5, 6, 7, 8, 9, and 11. We exclude two devices

in cases A, B and C, see Table 7, to evaluate the unseen per-

formance of detecting gaps. We find that there is a signifi-

cant performance drop in mAP@.50 for the unseen classes,

but note that the performance drop is much worse for case

C than for A and B. We reason that, with only 8 devices to

train on, the model has only few examples of what consti-

tutes as a gap, especially since the gaps vary much between

each device, and this is what leads to such differing results.

Table 7: YOLOv8 RGBD model on comparison with seen

and unseen devices.

Box

Dataset seen/unseen mAP@.50 mAP@.50-.95

All seen 0.995 0.919

case A seen 0.978 0.726

excl. HCA 1, HCA 2.1 unseen 0.612 0.36

case B seen 0.995 0.849

excl. HCA 3, HCA 4 unseen 0.633 0.291

case C seen 0.981 0.739

excl. HCA 5, HCA 6 unseen 0.202 0.115



4.5. Action Prediction

This section presents the results of an LLM for action

prediction using the knowledge tree as part of a retrieval-

augmented generation (RAG) approach. To evaluate the

LLM’s performance, three models are compared: major-

ity vote, LLM with relevant examples, and LLM with non-

relevant examples. The evaluation is conducted on a test set

comprising disassembly steps for four HCA devices, HCA 1

(kalo2), 2 (minol), 5 (ecotron), and 8 (exim), none of which

are present in the knowledge tree. The knowledge tree con-

tains 25 disassembly steps of 4 devices (2 HCAs, 2 smoke

detectors). The test set is made up of 19 disassembly queries

of 4 unseen devices (2 HCAs, 2 smoke detectors) for disas-

sembly action prediction. By unseen devices, we mean that

they are not present in the knowledge tree. As described in

Section 3.5, the possible actions to be predicted are: turn,

move, lever, cut (cutter), or cut (CNC mill). For each image

in the test set, the model predicts the corresponding disas-

sembly action.

The baseline model takes a majority vote from the k-

nearest neighbour examples, where k = 3, to determine the

predicted action. We compare the baseline model with two

cases of the LLM model, in the first case, LLM with 3 rel-

evant examples, the LLM model is given 3 examples from

the knowledge tree, retrieved using CLIP for nearest neigh-

bour search with the query image. In the second case, LLM

with 3 non-relevant examples, the LLM is provided with 3

examples where none of the examples contain the correct ac-

tion of the query image. The reasoning for the LLM with 3

non-relevant examples approach is two-fold. First, it aims

to evaluate the LLM’s ability to predict actions based on the

provided prompt information and contextual understanding

of the problem, rather than relying solely on replication of

similar examples. Second, it assesses the performance of the

method in scenarios where the knowledge tree lacks exam-

ples similar to the query device.

The LLM generates not only the predicted action but also

accompanying reasoning, tool arguments, and the designa-

tion of the new module within the workcell on which the de-

vice is located. However, for the results presented in Table 8,

only the predicted action is evaluated. Although the LLM’s

reasoning responses offer valuable insights, they are not in-

cluded in the quantitative analysis.

Table 8: Results of models for action prediction using knowl-

edge tree, averaged over 10 repetitions with GPT-4o.

Model Avg. acc. Std.

Majority vote w/ 3 relevant examples 0.42 0

LLM w/ 3 non-relevant examples 0.64 0.052

LLM w/ 3 relevant examples 0.91 0.034

The results presented in Table 8 demonstrate that the LLM

with 3 relevant examples achieves the highest accuracy, at

91%, while the LLM with 3 non-relevant examples attains an

accuracy of 64%. These findings highlight the critical role of

relevant examples in accurately predicting disassembly ac-

tions. The results are averaged over 10 repetitions using the

OpenAI GPT-4o model [15].

Table 9: Action prediction given one example of each disas-

sembly action, averaged over 10 repetitions with GPT-4o.

Model Avg. acc. Std.

Majority vote 0.21 0

LLM 0.91 0.065

In Table 9 we provide the LLM with one example of each

disassembly action. The LLM is able to correctly predict the

correct disassembly action with 91% accuracy, similar to the

result of the LLM with 3 relevant examples.

Previous action prediction methods, such as using PDDL

[13], require all disassembly scenarios to be programmed.

Meaning, actions cannot be predicted for scenarios that are

not specifically accounted for. Furthermore, the PDDL code

can become unmanageable with many device families. The

LLM with the knowledge tree for action prediction has the

advantage of being a data-driven method. New actions can

be added by providing relevant examples to the knowledge

tree and adding the action description to the prompt. The

disadvantage of this method is that if the LLM predicts the

wrong action, given relevant examples, it is not always trans-

parent as to why the wrong action is being predicted. The

generated reasoning response is however useful to determine

how the prompt or examples can be improved. The objective

and action description text may need to be rephrased, or the

text in the examples may need to be improved.

5. DISCUSSION

We developed a vision-based device recognition and ac-

tion prediction system designed to generalize to unseen de-

vices. For pose estimation, the YOLOv8-based segmen-

tation model achieved high performance on seen devices,

with an average mask mAP@.50-.95 of 84% across classes,

though certain classes like wires and screws scored lower.

Performance on unseen devices dropped by 10-20%, high-

lighting the need for additional data and improved meth-

ods. The supervised CNN device classifier achieved 99%

accuracy, outperforming the zero-shot CLIP-based method at

89%. For gap detection, a segmentation model achieved up

to 100% accuracy for seen devices, whereas a clustering ap-

proach struggled with smaller gaps. Action prediction using

an LLM with retrieval-augmented generation (RAG) demon-

strated promising results, achieving 91% accuracy. However,

achieving industrial-level reliability requires further refine-

ment, for example in the integration of detailed scene de-

scriptions and using multimodal, image and text, models.

This research establishes a robust baseline for automated

disassembly of electronic devices, demonstrating the po-

tential for both vision-based scene description and data-

driven action prediction. For industrial viability, future work

should address challenges with unseen devices by expand-

ing datasets, refining LLM prompts, and incorporating richer

scene representations. By examining the generalization ca-

pabilities of the vision and action prediction methods, this

work paves the way for economically viable recycling so-

lutions, contributing to improved material recovery and sus-

tainability.
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APPENDIX

A. ZERO-SHOT DEVICE CLASSIFICATION

The CLIP image embeddings are represented in a 2D

projection in Figure 7 using t-distributed stochastic neigh-

bour embedding (t-SNE) [6], where the colours represent the

ground-truth class.

(a) The colours represent the ground truth classes, with the image represen-

tation shown below.

(b) The images are the ground truth classes. Each class has a unique colour.

Fig. 7: CLIP image embedding of the images from Figure 2,

with 2D projection using t-SNE. The colours represent the

ground truth classes.

Figure 7 presents two visualizations: one using only

colours to represent different classes, and another that in-

cludes both colours and device images. The colour-only ver-

sion makes the clusters easier to distinguish, as the device

images in the second version can obscure them.

In the embedding space, the smoke detector back classes

exhibit the clearest clustering, with well-separated groups

and minimal overlap. The smoke detector front classes show

slightly more overlap, indicating less distinct separation be-

tween them. The HCA back classes are positioned closer

together, resulting in greater overlap, while the HCA front

classes show the most overlap of all, despite the clusters be-

ing spread out. Overall, the t-SNE visualization aligns with

the classification performance reported in Table 3.

B. ROTATION ESTIMATION USING THE
SUPERGLUE MODEL

An example comparison of the SuperGlue Indoor model,

vs. the SuperGlue model trained on our data with extended

augmentations to 360◦ rotations is shown in Figure 8.

Fig. 8: Example of SuperGlue Indoor Model compared to

our trained model

C. LLM PROMPT AND WORKFLOW FOR
ACTION PREDICTION

An example prompt is shown in Listing 1, where the LLM

is provided with the objective, available actions, background

information, examples of question-answer pairs, the query.

The query is to be completed by the LLM in JSON format. It

should give reasoning for the next disassembly step, the tool

to use, and further parameters.

You are an agent controlling a robotic workcell.

Objective:

Disassemble visible electronic devices to separate

out the batteries for recycling. To do this,

provide reasoning, select a tool and tool

argument, i.e. predict the disassembly action.

Available actions:

turn: if the front of the device is showing, the

device can be turned to show the back.

move: pick up an object from the work surface and

place somewhere. For example a device can be

picked up and put in the vise for levering.

lever: given a gap, lever out internal components

of a device. The module must be vise to use

this tool.

cut: given a device, cut it in two pieces, either

using the cutter or the CNC mill.

unscrew: unscrew a screw from a device.

push: can be used to push out a plastic_clip from

a device.



Background information:

If the module is vision you can perform the ’move’

action.

If the module is vise you can perform the actions

’lever’, ’move’, ’push’, and ’cut’. Lever can

only be used when the device is on the vise

module. The battery can be cut from the PCB if

it is has been removed from the device.

Example 1:

<Example QAs>

Example 2:

<Example QAs>

Example 3:

<Example QAs>

End of examples. You are given these facts about a

query:

Q: What are the object relations?

A: at_location(table_vision). Device 1: internals

in hca, battery in hca, battery next to

internals.

Q: What are the object positions?

A: hca back (kalo2) at (1519, 1734), internals at

(1519, 1676), battery at (1522, 1845).

Q: What is the JSON formatted disassembly step?

Use the format:

{

reasoning: [explain you reasoning for tool choice

],

tool: [tool name],

tool_arguments: [arguments to tool function],

current_module: vision,

new_module: [the new module the device is on after

performing the action]

}

Listing 1: LLM prompt providing objective, available

actions, background information, and examples. The LLM is

queried with the next disassembly step to be given in JSON

format.
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Fig. 9: Workflow of the LLM for action prediction. Question-answer pairs are: QA 1: What is the next disassembly step?, QA

2: What are the object relations?, QA 3: What are the object positions?, QA 4: What is the JSON formatted disassembly step?
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