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Introduction

There is an ever increasing amount of information available because data scientists have
developed computer systems that are constantly collecting data all over the world. An
example of this is the internet, where Google is collecting search queries and information
about how users interact with web pages. Machines cannot keep up with the information
that needs to be processed. Therefore data scientists are developing new scalable learning
and statistical methods to handle big data problems.

A scalable approach is to use distributed methods where data is split among many ma-
chines such that computations can be done in parallel and each machine analyses only a
subset of the complete dataset. The local machines send their results to a global machine
which aggregates the local results to give an overall interpretation of the data. Optimally,
the heavy computations are done on the local machines.

Distributed methods also have other applications; they can can offer security in terms
of privacy. The data that needs to be processed may be sensitive, for example patient
hospital records, where collecting data in one central location could be dangerous for
patient confidentiality. Instead communicating as little data as possible from multiple
locations to obtain a similar result would be advantageous. We will investigate how
to approach this, with emphasis on communication constraints between the machines; in
other words how to communicate as little information between machines as possible while
still being able to determine accurate results. This has practical reasons in the sense that
communicating over some networks can be expensive, for example communicating with
satellites.

We consider some idealised models where the data is sampled from well known distribu-
tions and where we investigate the theoretical limitations of communication constraints
through simulations and theoretical results. From the theoretical results we prove some
hypotheses determined from the simulations.

Some interesting methods that we look at are: A method with data from a normal
distribution, where on each local machine we describe the data with a one bit value and
rely on many local machines such that the aggregated result is still a good estimate for
the property of the distribution we are evaluating. In another method with data from
a uniform distribution, local machines have multiple communication rounds in which
they can communicate with the global machine and where the local machines can view
the communications of all machines from earlier communication rounds. Both of these
methods aim to cut down on the communication required between machines while still
giving good enough results.

We investigate the work of [6] where they explore theoretic lower bounds for communi-
cation constraints. They find a lower bound for the minimax risk of any estimator based
on the communicated data, given that the data is normally distributed. We calculate
the constants exactly for the proof they give, and further extend these results to Laplace
distributed data. We find that the Laplace lower bound for the minimax risk is the same
as for normal, up to constant factors. This brings us to ask questions about how other
distributions would perform.

Distributed computing is used for all sorts of systems and projects in the real world. We
highlight below a few projects that everyone has access to.
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• Folding@home [3]: The Folding@home project by Stanford university focuses on
disease research that simulates protein folding. The problems require solving many
computer calculations. The project uses idle processing resources of thousands of
computers to perform these computations.

• Pooled bitcoin mining [5]: Bitcoins are a virtual currency that are rewarded
by mining a block. A block is mined by doing many computer calculations. The
more blocks generated, the harder is becomes to mine. In pooled bitcoin mining,
multiple clients contribute to the generation of a block, and then split the block
reward according to the contributed processing power.

• Great Internet Mersenne Prime Search (GIMPS) [4]: Computers taking
part in the project receive tasks from the central computer. Each computer searches
for Mersenne prime numbers.
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1 Problem Setting

In this section we introduce various communication methods in order to formally outline
the problem. We will immediately use these definitions for our idealised examples in the
next section.

Definition 1.1 (Global and local machines). The global machine receives messages com-
municated by the local machines. Each local machine has a subset of the complete dataset
and can communicate with the global machine.

In a common scenario the local machines compute some estimator from the data they
have and communicate the result to the global machine. The global machine aggregates
the results to determine some estimator from the complete dataset.

Definition 1.2 (The dataset). Let m ∈ N be the number of machines and n ∈ N the
size of the data per machine. Let P be the set of all probability distributions. Consider
a fixed probability distribution P ∈ P. Let X := {X(1), ..., X(m)} be the complete dataset

or sample, where machine i has data X(i) := {X(i)
1 , ..., X

(i)
n }, where X

(i)
j

iid∼ P for all i, j.

The entire dataset has size mn.

Definition 1.3 (Communication rounds). Let T ∈ N denote the number of communica-
tion rounds. For each communication round all m machines may communicate once with
the global machine and the local machines may be able to read data published by the global
machine about earlier communication rounds.

We call a communication method between global and local machines a protocol.

Definition 1.4 (Protocols). A protocol Π(T ) defines at each round t ∈ {1, 2, ..., T}, the
communication of machine i to the global machine, given by Yt,i a measurable function
of the data X(i), and potentially of past communication between the global and all local
machines from earlier communication rounds.

Let Yt := {Yt,1, ..., Yt,m} be the set of all messages sent at round t. The sequence Y :=
(Y1, ...,YT) gives all communication between global and local machines. The protocol

Π(T ) then defines an estimator θ̂ := θ̂(Y1, ...,YT), where θ̂ is intended to estimate some
function θ on P .

A protocol can be represented by a Markov chain (Definition 5.7) X → Y → θ̂, showing
how a protocol uses a dataset X to give some Y, the communication from X between
the local and global machines, which in-turn defines an estimator θ̂.

For each protocol, we want to examine how much data is communicated, to do this we
look at communication costs and we name different types of protocols.

Definition 1.5 (Total communication cost). Let Lt,i be the minimal number of bits re-

quired to encode Yt,i. Then the total communication cost is given by L =
∑T
t=1

∑m
i=1 Lt,i.

Definition 1.6 (Non-distributive, independent and interactive protocols). Non-distributive
protocols have 0 rounds of communication, T = 0. Independent protocols have 1 round
of communication, T = 1. Interactive protocols have multiple rounds of communication,
T > 1.
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For the non-distributive protocol we assume that there are no local machines and that
the global machine has access to all the information.

In the examples in Section 2 we consider protocols that are non-distributive, independent
and interactive. In Section 6 and Section 7 where we investigate the minimax risk over
different models, we consider only independent protocols.

In the following sections we will focus on models that take samples from the Uniform,
normal and Laplace distributions.

Definition 1.7 (Uniform, normal and Laplace means models). We define a means model
to take a set of probability distributions P and a set of protocols Π that estimate the mean
θ(P ) for P ∈ P.

• Uniform means model is a means model with P a family of uniform distributions.

• Normal means model is a means model with P a family of normal distributions.

• Laplace means model is a means model with P a family of Laplace distributions.
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2 Example Protocols

We consider two different models in this section, the normal means model and the uniform
means model. In the normal means model we consider normal distributed data and
protocols that aim to estimate the true mean of the data, and similarly for the uniform
means model.

We consider some example protocols under the normal and uniform means models. To
determine how good an estimator is, we consider a risk function.

Definition 2.1 (Loss and risk functions of an estimator). Let θ̂ be an estimator for

θ ∈ Θ. The loss function L2 is given by L2(θ, θ̂) := ||θ− θ̂||22. The risk function R2 of an

estimator θ̂ is given by R2(θ, θ̂) := Eθ(L2(θ, θ̂)) the average L2 loss between the estimator
and the parameter of interest.

Using computer simulations in Section 3 we will compare the protocols by considering
the total communication cost and the L2 loss of the estimator.

We summarise the protocols we have chosen, where the protocol types are given in Defi-
nition 1.6. For the uniform means model we consider the following protocols investigated
in Section 2.1 in details, similarly below in the case of the other model.

1. A non-distributive protocol, where the data is not distributed and the mean of the
uniform distribution is estimated on the global machine.

2. An independent protocol, where we take the minimum of the data on each machine.

3. An interactive protocol, where local machines can read the communication of earlier
communication rounds from all the local machines.

For the normal means model we consider the following protocols from Section 2.2 to
estimate the mean of the sample.

1. A non-distributive protocol, where the data is not distributed and the mean is
estimated on the global machine given all the data.

2. An independent protocol, where we take the mean of the local data on each machine.

3. An independent protocol, where we communicate a one bit random variable from
each machine. The random variable is Bernoulli distributed with parameter depen-
dent on the local data.

The above protocols are defined rigorously in the following sections.

2.1 Protocols for the Uniform Means Model

Let θ ∈ R, and δ ∈ R>0. Let X
(i)
j

iid∼ U(θ − δ, θ + δ) for all i, j, where δ is the offset. In
the simulations we take δ = 10.
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We want to estimate θ with some estimator θ̂ using 3 different protocols, a non-distributive,
an independent and an interactive protocol.

Define the rounding function round(x, k) as x rounded in decimal representation to k
significant figures.

Example 2.1 (Protocol 1, A non-distributive protocol). Let Πunif
1 be the following non-

distributive protocol (T = 0). On the global machine let m̂ := minX of the entire dataset

and let θ̂non-dist := m̂+ δ.

In the non-distributive protocol, no distributed computing takes place and we use as a
benchmark protocol to compare the following protocols to.

Example 2.2 (Protocol 2, An independent protocol). Let Πunif
2 be the following indepen-

dent protocol (T = 1). Each local machine communicates the local minimum rounded to 3
significant figures, Yi := round(minX(i), 3) to the global machine. On the global machine

let θ̂ind := min{Y1, ..., Ym}+ δ.

Example 2.3 (Protocol 3, An interactive protocol). Let Πunif
3 be the following interactive

protocol with T = m communication rounds. For all t, i let Yt,i := round(minX(i), 3) if
minX(i) < min Yj for all j ∈ {1, ..., i− 1} and otherwise do not communicate Yt,i. On

the global machine let θ̂int := min{Y1, ...,Ym}+ δ.

The idea behind Example 2.3 is that in each communication round, all the machines can
view the communication made by the local machines in all the earlier communication
rounds. Each machine communicates the computed minimum of its local data if the
minimum is less than all the minima communicated by the local machines in all previous
communication rounds. The global machine takes the minimum of all the communicated
minima to determine an estimator for the absolute minimum of the data.

We note that protocols Πunif
2 and Πunif

3 must return the same result for the L2 loss by
definition. They do differ however in how much data is communicated. We will investigate
this in our simulations in Section 3.

2.2 Protocols for the Normal Means Model

Let θ ∈ R and σ2 ∈ R≥0. Let X
(i)
j

iid∼ N(θ, σ2) for all i, j, where for simplicity we take

σ2 = 1.

Example 2.4 (Protocol 1, A non-distributive protocol). Let Πnorm
1 be the following non-

distributive protocol (T = 0). On the global machine let θ̂non-dist := 1
mn

∑m
j=1

∑n
i=1X

(i)
j .

No distributed computing takes place and we use this as a benchmark protocol.

Example 2.5 (Protocol 2, An independent protocol). Let Πnorm
2 be the following inde-

pendent protocol (T = 1). Each local machine communicates the local sample average

rounded to 3 significant figures Yi := round( 1
n

∑n
j=1X

(i)
j , 3), to the global machine. On

the global machine let θ̂ind := 1
m

∑m
i=1 Yi.

Example 2.6 (Protocol 3, An independent protocol). Let Πnorm
3 be the following in-

dependent protocol (T = 1). Let us assume that θ ∈ [−a, a] for some a ∈ R>0. On

each local machine compute the sample average X
(i)

:= 1
n

∑n
j=1X

(i)
j and then take
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X
(i)

∗ := (X
(i) ∨ −2a) ∧ 2a. Let Zi be a Bernoulli random variable with parameter

pi :=
X

(i)
∗ +2a
4a . The global machine computes the estimator θ̂ind := 1

m

∑m
i=1 (Zi4a− 2a).

The idea behind Example 2.6 is that on each machine we encode the sample average as a
Bernoulli random variable with the parameter given by the scaled local sample average.
Thus each machine communicates only 1 bit. The global machine takes the sample average
of all these random variables to give a value between 0 and 1 which we can scale to give
an estimator for the true mean.

We have that Πnorm
3 communicates only 1 bit per machine, which is much less than the

communication in Πnorm
2 . We are interested in comparing the performance of protocols

Πnorm
2 and Πnorm

3 from the above examples. We will investigate this in our simulations in
Section 3.
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3 Simulations

In this section we will simulate some of the protocols covered in the pervious examples.

We compare different protocols given in the examples. In figures Figure 1, Figure 2 and
Figure 3, we vary the number of machines m and the size of the dataset per machine n,
such that mn = 104 is taken to be fixed. We hereby fix the global sample size to study
how the number of machines effects the number of bits communicated and the sample
risk.

In each figure below we have 5 bar charts and a boxplot. Each bar chart represents a
protocol with some m,n given in the title of the chart.

In each bar chart we make 100 trials. For each trial we generate new sample data from
the applicable distribution. We carry out the protocol with associated m and n, which
gives us an estimator θ̂ for the true mean θ, allowing us to compute the loss L2(θ̂, θ).

Let Loutcomes be the set of 100 outcomes of L2(θ̂, θ) with the estimator θ̂ computed in
each trial. We discretise the 100 outcomes of Loutcomes into 50 equally sized bins, where
each bin is labelled with the L2 average that it represents. Each bar chart is composed of
50 bars. The height of each bar depends on how many outcomes fall into its associated
bin and we call this the frequency. The risk can be approximated by a sample risk

1
100

∑
i L2(θ̂i, θ), the sample mean of the L2 loss outcomes.

In the box plot we display the number of bits communicated with the global machine by
each of the protocols over the 100 trials. We note that the scale of the bits communicated
is logarithmic.

3.1 Simulations of Protocols for the Uniform Means Model

We compare protocols Πunif
1 , Πunif

2 and Πunif
3 from Example 2.1, Example 2.2 and Exam-

ple 2.3 in Figure 1.

Figure 1: Comparison of protocols Πunif
1 , Πunif

2 and Πunif
3 .
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We see that the interactive protocol communicates fewer bits than the independent pro-
tocol for the same m (and associated n), and that the protocols perform equally well in
terms of the value of the L2 loss. We can see from how the protocols Πunif

2 and Πunif
3 are

defined in Example 2.2 and Example 2.3 that they must return the same values for the
L2 loss.

3.2 Simulations of Protocols for the Normal Means Model

We compare protocols Πnorm
1 , Πnorm

2 and Πnorm
3 from Example 2.4, Example 2.5 and

Example 2.6 in Figure 2 and Figure 3. In the following figures we show the number of
machines m for m = 10, 102, 103 and 104 with the associated number of data points per
machine n, such that mn = 104.

Not surprisingly we observe that Πnorm
1 , the non-distributive protocol gives us the best

results. We focus on comparing the independent protocols Πnorm
2 and Πnorm

3 against each
other. This is of interest because from the definition of Πnorm

3 it is not clear how well it
will perform.

Figure 2: Comparison of protocols Πnorm
1 , Πnorm

2 and Πnorm
3 .
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Figure 3: Comparison of protocols Πnorm
1 , Πnorm

2 and Πnorm
3 .

We examine Figure 2, Figure 3 and the protocol Πnorm
2 . We find for all values of m

(and associated n) that Πnorm
2 performs equally well when considering only the L2 loss.

Increasing m directly increases the number of bits communicated since each machine
communicates a set number of bits independent of n.

We investigate protocol Πnorm
3 . We find that the smaller the value of m, the larger the

L2 loss is. For the same values of m = 10, 102 and 103, we find that Πnorm
2 gives a much

smaller L2 loss than Πnorm
3 .

Figure 4: Comparison of protocols Πnorm
1 , Πnorm

2 and Πnorm
3 .

In Figure 4 we keep n = 1 and vary only m. We see that Πnorm
2 and Πnorm

3 for the same
m = 102, 103 and 104, give approximately the same values for the L2 loss.

Our hypothesis is that Πnorm
2 performs similarly well to Πnorm

3 in terms of L2 loss, for
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n = 1.

We note that for each value of m with n = 1 that Πnorm
3 communicates a factor of 10 less

bits than Πnorm
2 . This makes protocol Πnorm

3 better in all senses than Πnorm
2 given that

n = 1.
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4 Theoretical Results for the Example Protocols

Let X
(i)
j

iid∼ N(θ, σ2) for all i, j, where σ2 = 1.

Proposition 4.1. Consider the protocol Πnorm
2 from Example 2.5. Then

R(θ, θ̂ind) =
σ2

mn
+O

(
1

(mn)p

)
.

The proof is given in Section A.1.

Proposition 4.2. Consider the protocol Πnorm
3 from Example 2.6. Then

R(θ, θ̂ind) =
1

m

(
4a2 − θ2

)
+O

(√
ne−

1
2na

2
)
.

The proof is given in Section A.2.

We find that the risk function for Πnorm
2 depends on both m and n while the R2 risk for

Πnorm
3 depends only on m. Hence for large n protocol Πnorm

2 performs much better than
Πnorm

3 .

From Proposition 4.1 we see that protocol Πnorm
2 achieves the minimax lower bound given

in Theorem 6.8, ignoring logarithmic factors, as discussed in the end of that section. An
important question that we do not cover in this paper is if it is possible to give a protocol
that achieves the lower bound given in Theorem 6.8 including logarithmic factors.
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5 Review of Information Theory Concepts

In order to understand the proofs given in the upcoming sections we need to review some
concepts from information theory. The definitions are summarised from [1] where they
can be found for a more comprehensive explanation. Of importance is Definition 5.5 which
is key in determining the theoretical lower bounds for the minimax risk in Theorem 6.8
and Theorem 7.4.

Definition 5.1 (Entropy). Entropy provides an absolute limit on the best possible average
length of lossless encoding or compression of an information source.

The entropy H(X) of a discrete random variable X with sample space X is defined by

H(X) := −
∑
x∈X

p(x) log2 p(x).

The differential entropy h(V ) of a continuous random variable V with density f(v) and
support S of the random variable is defined as

h(V ) :=

∫
S

f(v) log2 f(v) dv.

Definition 5.2 (Joint Entropy). If X and Y are independent, then their joint entropy
is the sum of their individual entropies. The joint entropy H(X,Y ) of discrete random
variables X and Y with p(x, y) and sample space X and Y, given by

H(X,Y ) := −
∑

x∈X ,y∈Y
p(x, y) log2(p(x, y)),

which can also be written as

H(X,Y ) = −E(log2 p(X,Y ))

where E is the expectation and p(x, y) is the joint probability of x and y occurring together
and by convention 0 · log2(0) := 0.

The differential entropy of a set V1, V2, ..., Vn of continuous random variables with density
f(v) where v := (v1, ..., vn), is defined as

h(V1, V2, ..., Vn) = −
∫
f(v) log2 f(v) dv.

Definition 5.3 (Conditional Entropy). The conditional entropy H(X|Y ) is defined as

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log2(p(y|x)).

If continuous random variables X,Y have a joint density function f(x, y), we can define
the conditional differential entropy h(X|Y ) as

h(X|Y ) = −
∫
f(x, y) log2 f(x|y) dx du.

We give some useful properties of entropy H.
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1. H(X) ≥ 0

2. Hb(X) = (logb a)Ha(X) where Ha(X) := −
∑
x∈X p(x) loga p(x) and H := H2.

3. For any two random variables, X, Y, we have

H(X|Y ) ≤ H(X)

with equality if and only if X and Y are independent.

4. H(X1, ..., Xn) ≤
∑n
i=1H(Xi), with equality if and only if the Xi are independent.

5. H(X) ≤ log2 |X | with equality if and only if X is distributed uniformly over the
sample space X .

6. H(p) is concave in p.

Definition 5.4 (Relative Entropy). The relative entropy, or Kullback-Leibler divergence
between two probability mass functions p(x) and q(x) is defined as

D(p||q) :=
∑
x∈X

p(x) log2

p(x)

q(x)
= Ep log2

p(X)

q(X)
.

It is the expectation of the logarithmic difference between the probabilities p and q, where
the expectation is taken using probability mass function p. We use the convention that
0 log2

0
0 := 0, 0 log2

0
q := 0 and p log2

p
0 :=∞.

The relative entropy D(f ||g) between two densities f and g is defined by

D(f ||g) =

∫
f(v) log2

f(v)

g(v)
dv.

Relative entropy compares the entropy of two distributions over the same random variable.
We note that it is not a metric since it does not satisfy sub-additivity nor symmetry. A
relative entropy of 0 indicates that we can expect similar behaviour of the two distributions
and a large relative entropy indicates that the two distributions have very much different
behaviours.

Definition 5.5 (Mutual Information). The mutual information I(X;Y ) is the reduction
in the uncertainty of X due to the knowledge of Y , given by

I(X;Y ) : =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)

= D(p(x, y)||p(x)p(y))

= H(X)−H(X|Y ). (1)

The mutual information I(V ;W ) between two continuous random variables with joint
density f(v, w) is defined by

I(V ;W ) :=

∫
f(v, w) log2

f(v, w)

f(v)f(w)
dv dw.

By symmetry we have that

I(X;Y ) = H(Y )−H(Y |X).

Intuitively, the mutual information of I(X;Y ) quantifies the number of bits obtained
about X, through Y ; it measures the information that X and Y share.
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Definition 5.6 (Conditional Mutual Information). The conditional mutual information
of random variables X and Y given Z is defined by

I(X;Y |Z) := H(X|Z)−H(X|Y, Z) = Ep(x,y,z) log2

p(X,Y |Z)

p(X|Z)p(Y |Z))
. (2)

Theorem 5.1 (Chain Rules). We have that H satisfies the chain rules

H(X,Y ) = H(X) +H(Y |X),

and
H(X,Y |Z) = H(X|Z) +H(Y |X,Z).

Let X1, ..., Xn be drawn according to p(x1, ..., xn), then

H(X1, ..., Xn) =

n∑
i=1

H(Xi|X1, ..., Xi−1).

The chain rule for mutual information, is given by

I(X1, ..., Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, ..., Xi−1). (3)

Definition 5.7 (Markov Chain). Random variables X,Y and Z form a Markov chain
X → Y → Z if the condition distribution of Z depends only on Y and is conditionally
independent of X.

More formally X,Y and Z form a Markov chain X → Y → Z if the joint probability
mass function can be written as p(x, y, z) = p(x)p(y|x)p(z|y).

Theorem 5.2 (Data Processing Inequality). If X → Y → Z, then I(X;Y ) ≥ I(X;Z).
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6 Minimax Lower Bound for the Normal Means Model

In this section we investigate the work in [6] to find a theoretical lower bound for the
minimax risk under the normal means model. For completeness we recall their results
and in doing so we remove some of the inaccuracies found in their proofs. We use this as
a basis for the next section in which we extend this work to give a lower bound for the
minimax risk under the Laplace means model.

We look at only independent protocols under the normal means model in this section. We
define the set of independent protocols Aind(B,P) satisfying certain budget constraints.

Consider arbitrary number of machines m ∈ N where each machine has n ∈ N samples
from some probability distribution P ∈ P.

Definition 6.1. Let each machine have communication budget of Bi ∈ N number of bits
and let B = {B1, ..., Bm}. For some protocol and dataset, let the minimum number of
bits communicated be given by Li as in Definition 1.5.

Given a family of distributions P, the class of independent protocols is given by

Aind(B,P) :=

{
independent protocols Π : sup

P∈P
EP (Li) ≤ Bi, for all i ∈ {1, ...,m}

}
.

We use the minimax principal to minimise the possible loss for a maximum loss scenario
for the R2 risk of an estimator given by a protocol.

Definition 6.2. Let each machine have communication budget of Bi ∈ N number of bits
and let B = {B1, ..., Bm}. Let θ be some function of P . A protocol Π ∈ Aind(B,P) gives

an estimator θ̂Π := θ̂(Y). Define the minimax risk for the independent protocol as

Mind(θ,P, B) := inf
Π∈Aind(B,P)

sup
P∈P

EP
(
||θ̂Π(Y)− θ(P )||22

)
. (4)

We will build up to Theorem 6.8, where we will find a lower bound for the above minimax
risk given in Definition 6.2, where for P we take a d-dimensional normal distribution family
and where we let θ(P ) be the mean of probability distribution P for P ∈ P. The lower
bound is of interest because it will give us the minimum number of bits required such
that the minimax risk gives an order optimal result. The proof to find the lower bound
is not constructive and thus it does not give a protocol that satisfies this lower bound.

For the moment we will consider the general case where P is a set of probability distri-
butions and where θ(P ) is some function on P for P ∈ P.

Let V := {−1, 1}d where V indexes a family of probability distributions {Pν}ν∈V ⊂ P,
such that θν := θ(Pν) = δν ∈ Θ where δ > 0 fixed. Sample V uniformly at random from
V. Sample X from distribution PV=ν . Then from Equation (4)

Mind(θ,P, B) ≥ inf
Π∈Aind(B,{Pν}ν∈V)

sup
P∈{Pν}ν∈V

EP
(
||θ̂Π(Y)− θ(P )||22

)
. (5)

This lower bound is useful since we now take the supremum over a countable set.

We consider the data to be d-dimensional. Let machine i ∈ {1, ...,m} have data sample

X(i) ∈ Rd×n. The kth column of X(i) is X(i,k) and the jth row of X(i) is X
(i)
j .
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We have from above that V gives us the probability distribution where we sample X from.
Hence the data X(i) in the ith machine depends on V . We transmit the information Yi
based only onX(i) to the global machine. Thus we have the Markov chain V → X(i) → Yi.

Definition 6.3. The Hamming distance between ν, ν′ ∈ V is the number of positions at
which the corresponding values in the vector are different, given by dham(ν, ν′).

We use Lemma 6.1 and Lemma 6.2 to give a lower bound for the minimax risk (5) in
terms of mutual information between V and Y, where the result is given in Lemma 6.3.

Lemma 6.1 (Lemma 1 of [6]). Let V be uniformly sampled from V. For any estimator

θ̂ and any t ∈ R where t ≥ 1
4 we have

sup
P∈{Pν}ν∈V

E(||θ̂ − θ(P )||22) ≥ δ2(btc+ 1) inf
ν̂∈V

P(dham(ν̂, V ) > t).

The proof is given in Section A.3.

Lemma 6.2 (Corollary 1 of [2]). Let V → X → ν̂ be a Markov chain, where V is
uniformly distributed on V. For t < 1

2 (d− 1), d ≥ 2 and ν̂ ∈ V we have

P(dham(ν̂, V ) > t) ≥ 1− I(V ;X) + log2 2

log2
|V|
Nmax
t

where Nmax
t := maxv∈V | {ν′ ∈ V : dham(ν, ν′) ≤ t} | is the size of the largest t-neighbourhood

in V.

The proof is given in Section A.4.

Remark 1. We have that Nmax
t ≤ 2

(
d
t

)
for 0 ≤ t ≤ d+1

3 .

The proof is given in Section A.5.

Remark 2. We have that
(
d
t

)
≤
(
de
t

)t
.

The proof is given in Section A.6. We use Remark 1 and Remark 2 to help prove the
following Lemma 6.3.

Lemma 6.3 (Lemma 2 of [6]). For d ≥ 3 we have from Lemma 6.1 and Lemma 6.2 that

sup
P∈{Pν}ν∈V

E(||θ̂(Y)− θ(P )||22) ≥ δ2(bd/6c+ 1)

(
1− I(V ; Y) + 1

d/6

)
.

The proof is given in Section A.7. We use this to prove Theorem 6.8 for the case that the
dimension d ≥ 9, by giving an upper bound for the mutual information I(V ; Y).

For small d we need to consider a different lower bound for the minimax risk.

Lemma 6.4 (Appendix A, Le Cam’s Method of [6]). We consider the d-dimensional case
for d ≤ 8. By taking the supremum over a smaller set, we have

Mind(θ,P, B)
(5)

≥ inf
Π∈Aind(B,{Pν}ν∈V)

sup
P∈{Pν}ν∈V

EP
(
||θ̂Π(Y)− θ(P )||22

)
≥ δ2 d

16

(
1−

√
2I(V ; Y)

)
.
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The proof is given in Section A.8.

We use Lemma 6.4 to prove Theorem 6.8 for d < 9 by finding an upper bound for I(V ; Y).

Proposition 6.1 (Appendix A , Tensorisation of information [6]). Consider a protocol
Π such that Yi is constructed based only on X(i). Then from we have

I(V ; Y) ≤
m∑
i=1

I(V ;Yi).

The proof is given in Section A.9

Using Proposition 6.1 we need to find an upper bound for I(V ;Yi).

Lemma 6.5 (Lemma 4 of [6]). Let V be sampled uniformly at random from {−1, 1}d.

For any pair (i, j), assume that X
(i)
j is independent of {X(i)

j : j′ 6= j} ∪ {Vj′ : j′ 6= j}
given Vj.

Define S0 := {x ∈ Rn : |
∑n
l=1 xl| ≤

√
na}. Assume that

sup
S∈σ(S0)

Pν(S)

Pν′(S)
≤ exp(α),

where σ(S0) the collection of measurable subsets of the set S0. Define the random variable
Ej := 1

X
(i)
j ∈S0

. Then

I(V ;Yi) ≤ 2(e4α − 1)2I(X(i);Yi) +

d∑
j=1

H(Ej) +

d∑
j=1

P(Ej = 0).

The proof is given in [6, Lemma 4].

We note that Lemma 6.4, Lemma 6.3 and Lemma 6.5 have not depended on any distribu-
tion family for P. This is useful because it means we can use the same theory in order to
find lower bounds for the minimax risk for different distribution families using the same
principals.

Consider the d-dimensional normal family, with σ2 ∈ R>0 as

Nd :=
{
N(θ, σ2Id×d) : θ ∈ [−1, 1]d

}
⊂ P.

Then Lemma 6.7 will give us an upper bound for I(V ;Yi) assuming that the data is
sampled from P for P ∈ Nd and that θ(P ) gives the mean of normal probability distri-
bution P . For the proof of Lemma 6.7 we require Kullback-Leibler divergence for the
multivariate normal distribution.

Lemma 6.6 (Kullback-Leibler divergence for the Multivariate Normal distribution). Let
p(x) and q(x) be probability density functions with p(x) mean µ and variance σ2Id×d, and
q(x) with mean m and variance σ2Id×d. Then

D(p||q) =
1

2σ2

d∑
i=1

(µi −mi)
2.
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The proof is given in Section A.11.

Lemma 6.7 (Lemma 5 of [6]). Let a > 0 and δ > 0 be chosen such that
√
naδ
σ2 ≤ 1.2564

4
for any i ∈ {1, ...,m}, and let h(p) = −p log2(p)−(1−p) log2(1−p) be the binary entropy.
Let

bi := min

{
128

a2

σ2
H(Yi), d

}
.

Then using Lemma 6.5 we have

I(V ;Yi) ≤
nδ2

σ2
bi + dh

(
2 exp

(
− (a−

√
nδ)2

2σ2

))
+ 2d exp

(
− (a−

√
nδ)2

2σ2

)
. (6)

The proof is given in [6, Lemma 5].

We split the proof for Theorem 6.8 into two cases, for d ≥ 9 and for d < 9. For d ≥ 9
we use Lemma 6.3 and for d < 9 we use Lemma 6.4, both giving a lower bound for the
minimax risk from (5) in terms of the mutual information I(V ; Y). Using Lemma 6.7 we
give an upper bound for I(V ; Y). With this in hand we can give upper bounds for the
three terms on the right hand side of (6) and together to give Theorem 6.8.

Theorem 6.8 (Theorem 2 of [6]). Let B = {B1, ..., Bm} where each machine has com-
munication budget Bi ∈ N and receives an i.i.d. sample of size n from a distribution
P ∈ Nd. Then

Mind(θ,Nd, B) ≥ cσ
2d

mn
min

{
mn

σ2
,
m

logm
,

m

logm
(∑m

i=1 min
{

1, Bid
})} ,

where c = 4.6875 · 10−8.

The proof is given in Section A.10.

To achieve an order optimal result for the lower bound in Theorem 6.8, the total number
of bits communicated per machine must scale with d. Then the lower bound is of order

σ2d
mn logm . We can construct a protocol that almost achieves this order optimal result up

to a factor of 1
logm . We gave such a protocol earlier in Proposition 4.1 using protocol

Πnorm
2 for the 1-dimensional case. A protocol that achieves the same order but for the

d-dimensional case follows similarly to that example.

We wonder how the lower bound for the minimax risk depends on the probability distri-
bution family. In the next section we will consider the Laplace means model and show
that for a d-dimensional Laplace family we obtain the same lower bound for the minimax
risk up to constant factors. This is surprising since the normal distribution has much
lighter tails than the Laplace distribution. We go on to ask ourselves how the set of
distribution families that attain the same lower bound up to constant factors would be
described, however this goes beyond the bounds of this paper.
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7 Minimax Lower Bound for the Laplace Means Model

In this section we will derive a similar proof to Theorem 6.8 but for the d-dimensional
Laplace family. To do this we need to formulate a similar proof to Lemma 6.7 but for
Laplace, this is given in Lemma 7.3.

Define the d-dimensional Laplace family, with b ∈ R>0 as

Ld :=
{

Laplace(θ, bId×d) : θ ∈ [−1, 1]d
}
.

Similarly to Lemma 6.7 for the normal means model, the proof of Lemma 7.3 requires
the Kullback-Leiber divergence for the multivariate Laplace distribution.

Lemma 7.1 (Kullback-Leibler divergence for Univariate Laplace distribution). Let p(x)

and q(x) be Laplace probability density functions with p(x) = 1
2b exp

(
− |x−µ|b

)
and q(x) =

1
2b exp

(
− |x−m|b

)
, where µ,m ∈ R are the locations and b ∈ R>0 is the scale. Then

D(p||q) = e−
|µ−m|
b +

|µ−m|
b

− 1.

The proof is given in Section A.12.

Lemma 7.2 (Kullback-Leibler divergence for Multivariate Laplace distribution). Let p(x)
and q(x) be Laplace probability density functions where p(x) has location µ and covariance
bId×d and q(x) has location m and covariance bId×d. Then

D(p||q) = e−
1
b

∑d
i=1|µi−mi| +

1

b

d∑
i=1

|µi −mi| − 1

= e−
1
b ||µ−m||1 +

1

b
||µ−m||1 − 1.

Proof. This follows similarly to Lemma 7.1.

We split the proof of Theorem 7.4 into two cases, for d ≥ 9 and for d < 9. For both
cases we can use the same lower bounds used for Theorem 6.8, namely for d ≥ 9 we use
Lemma 6.3 and for d < 9 we use Lemma 6.4. Both give us a lower bound in terms of
I(V ; Y) that is not dependent on the distribution family. In order to give an upper bound
for I(V ; Y) we consider Lemma 7.3 and use this in conjunction with Proposition 6.1.

Lemma 7.3. Let a > 0 and δ > 0 be chosen such that
δ
√
nia
b ≤ 1.2564

4 for any i ∈
{1, ...,m}, and let h(p) = −p log(p)− (1− p) log(1− p) be the binary entropy. Then

I(V ;Yi) ≤
niδ

2

b2
min

{
128a2H(Yi), d

}
+ dh

(
2 exp

(
−a

2

32

))
+ 2d exp

(
−a

2

32

)
. (7)

The proof is given in Section A.13.

The upper bound from Lemma 7.3 depends on the Laplace distribution family Ld. With
this in hand, we can give upper bounds for the three terms on the right hand side of
Equation (7) to give an upper bound on I(V ; Y). We plug this result back into Lemma 6.3
for d ≥ 9 and Lemma 6.4 for d < 9 to give the result in Theorem 7.4.
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Theorem 7.4. Let B = {B1, ..., Bm} where each machine has communication budget
Bi ∈ N and receives an i.i.d. sample of size n from a distribution P ∈ Ld. Then

Mind(θ,Ld, B) ≥ cσ
2d

mn
min

{
mn

σ2
,
m

logm
,

m

logm
(∑m

i=1 min
{

1, Bid
})} .

where c = 2.44 · 10−9.

The proof is given in Section A.14.

We find that the lower bound given here is the same as the lower bound found in Theo-
rem 6.8, ignoring constant factors.
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A Appendix

We give the proofs referred to in the paper.

A.1 Proof of Proposition 4.1

Proof. Let X
(i)

:= 1
n

∑n
j=1X

(i)
j calculated by machine i.

Remark 3 (Integers and Binary). A positive integer n ∈ N can be written with b bits in
binary notation when 2b−1 ≤ n ≤ 2b − 1. Then b = blog2(n)c+ 1.

Let X
(i)

= yi + ri where yi is the first b := dp log2(mn)e bits of X
(i)

we transmit for

p ∈ N, and ri = X
(i) − yi the error term in the transmitted data.

We take the binary representation X
(i)

= ±(1.a1a2...ab...)2
k for a1, a2, ... ∈ {0, 1} digits

and k ∈ Z. Then yi = ±(1.a1a2...ab)2
k and ri = ±(0.0...0ab+1...)2

k. We have |X(i)| ≥
1 · 2k and |ri| ≤ (0.0...01)2k where the 1 is on the place of ab. Then∣∣∣∣ ri

X
(i)

∣∣∣∣ ≤ (0.0...01)2k

(1)2k
≤ 2−b

1
≤ 1

(mn)p
.

Then

yi = X
(i) −X(i)

(
ri

X
(i)

)
= X

(i)
(

1 +O

(
1

(mn)p

))
,

and
m∑
i=1

yi =

(
1 +O

(
1

(mn)p

)) m∑
i=1

X
(i)
.

In the global machine we receive y1, ..., ym and calculate ȳ := 1
m

∑m
i=1 yi. Then ȳ =

1
m

(
1 +O

(
1

(mn)p

))∑m
i=1X

(i)
. We want to determine E((ȳ − θ)2).

We have that
E((ȳ − θ)2) = E(ȳ2) + θ2 − 2θE(ȳ). (8)

We determine the terms on the right hand side of the above equation. We have

E(ȳ) =
1

m

(
1 +O

(
1

(mn)p

))
E

(
m∑
i=1

X
(i)

)

=

(
1 +O

(
1

(mn)p

))
1

m

m∑
i=1

E
(
X

(i)
)

=

(
1 +O

(
1

(mn)p

))
θ.
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By squaring ȳ2 we have

E(ȳ2) = E

 1

m2

(
1 +O

(
1

(mn)p

))2
(

m∑
i=1

X
(i)

)2
 (9)

=
1

m2

(
1 +O

(
1

(mn)p

))2

E

( m∑
i=1

X
(i)

)2
 . (10)

Since X
(i)

are independent random variables, Var(X) = E(X2)−(E(X))2 and Var(aX) =
a2Var(X) we have

E

( m∑
i=1

X
(i)

)2
 = Var

(
m∑
i=1

X
(i)

)
+ E2

(
m∑
i=1

X
(i)

)

=

m∑
i=1

Var(X
(i)

) +

(
m∑
i=1

E(X
(i)

)

)2

=

m∑
i=1

Var

 1

n

n∑
j=1

X
(i)
j

+

(
m∑
i=1

θ

)2

=

m∑
i=1

1

n2
Var

 n∑
j=1

X
(i)
j

+ (mθ)
2

=

m∑
i=1

σ2

n
+ (mθ)

2

=
mσ2

n
+m2θ2.

Hence by substituting the above into Equation (9) we arrive at

E(ȳ2) =
1

m2

(
1 +O

(
1

(mn)p

))2(
mσ2

n
+m2θ2

)
=

(
1 +O

(
1

(mn)p

))(
σ2

mn
+ θ2

)
.

Then by substituting into Equation (8) we find

E((ȳ − θ)2) =

(
1 +O

(
1

(mn)p

))(
σ2

mn
+ θ2

)
+ θ2 − 2θ2

(
1 +O

(
1

(mn)p

))
=

σ2

mn
+ θ2 +

(
σ2

mn
+ θ2

)
O

(
1

(mn)p

)
+ θ2 − 2θ2 − 2θ2O

(
1

(mn)p

)
=

σ2

mn
−
(
σ2

mn
− θ2

)
O

(
1

(mn)p

)
=

σ2

mn
+O

(
1

(mn)p

)
.
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A.2 Proof of Proposition 4.2

Proof. Let us assume that θ ∈ [−a, a] for some a ∈ R>0 and X
(i) ∼ N

(
θ, 1

n

)
as in

protocol Πnorm
3 given in Example 2.6. We introduce the definition for the truncated

normal distribution, since in the above protocol we compute the sample average X
(i)

and

then take X
(i)

∗ := (X
(i) ∨ −2a) ∧ 2a, the truncation of X

(i)
to the interval [−2a, 2a].

Definition A.1 (Truncated normal distribution). Suppose X ∼ N(µ, σ2) has a normal
distribution and lies within the interval X ∈ (a, b) with a < b and a, b ∈ R. Then
X conditional on a < X < b has a truncated normal distribution Ntrunc(µ, σ

2) with
probability density function f for a ≤ x ≤ b given by

f(x) =
φ
(
x−µ
σ

)
σ (Φ (β)− Φ (α))

(11)

and by f = 0 otherwise, where α = a−µ
σ and β = b−µ

σ .

Here φ is the probability density function of the standard normal distribution, given by
φ(ζ) = 1√

2π
exp

(
− 1

2ζ
2
)

and Φ the cumulative distribution function.

The mean is given by

E(X|a < X < b) = µ+
φ(α)− φ(β)

Φ(β)− Φ(α)
σ.

The variance is given by

Var(X|a < X < b) = σ2

(
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2
)
.

By Definition A.1 we have that X
(i)

∗ is truncated normal distributed X
(i)

∗ ∼ Ntrunc(µ, σ2)
with µ := θ, σ2 := 1

n . Take

α :=
−2a− µ

σ
=
√
n(−2a− θ) and β :=

2a− µ
σ

=
√
n(2a− θ).

Then by definition

E(X
(i)

∗ ) = θ +
φ(α)− φ(β)

Φ(β)− Φ(α)

1√
n
.

We have that
α ≤ −

√
na and β ≥

√
na.

Note that Φ is non-decreasing, Φ(x) = 1− Φ(−x) and Φ(0) = 1/2. We have

Φ(β)− Φ(α) ≥ Φ(
√
na)− Φ(−

√
na)

= Φ(
√
na)−

(
1− Φ(

√
na)
)

= 2Φ(
√
na)− 1

= 2
(
Φ(
√
na)− Φ(0)

)
. (12)
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Then for any a and large enough n such that
√
na > 1, we have

Φ(β)− Φ(α) ≥ 2 (Φ(1)− Φ(0))

> 2(0.84− 1/2) = 0.17 > 0.

We have
α2 = n(−2a− θ)2 ≥ na2 and β2 = n(2a− θ)2 ≥ na2.

Then

φ(α) ∨ φ(β) ≤ 1√
2π
e−

1
2na

2

.

Since φ(ζ) > 0 we have

|φ(α)− φ(β)| ≤ max {φ(α), φ(β)} ≤ 1√
2π
e−

1
2na

2

. (13)

Thus by Equation (12) and Equation (13) we get

φ(α)− φ(β)

Φ(β)− Φ(α)
= O

(
e−

1
2na

2
)
.

Hence

E(X
(i)

∗ ) = θ +
1√
n
O
(
e−

1
2na

2
)
. (14)

By definition, the variance of X
(i)

∗ is given by

Var(X
(i)

∗ ) = σ2

(
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2
)
.

Applying again Equation (12) and Equation (13) we get(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2

= O
(
e−na

2
)
.

Similarly as above we have

|αφ(α)− βφ(β)| ≤ max {|α|φ(α), βφ(β)}

≤ max

{√
n| − 2a− θ| 1√

2π
e−

1
2na

2

,
√
n(2a− θ) 1√

2π
e−

1
2na

2

}
=

√
n√
2π
e−

1
2na

2

max {| − 2a− θ|, (2a− θ)}

≤ 3a

√
n√
2π
e−

1
2na

2

.

Then
∣∣∣αφ(α)−βφ(β)

Φ(β)−Φ(α)

∣∣∣ = O
(√

ne−
1
2na

2
)

. Thus

Var(X
(i)

∗ ) = σ2 +O
(√

ne−
1
2na

2
)
. (15)

Consider Z1, ..., Zm Bernoulli random variables where the probability of success for Zi is

pi :=
X

(i)

∗ + 2a

4a
.
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Consider an estimator θ̂ for the mean θ given by

θ̂ =
1

m

m∑
i=1

(Zi4a− 2a) .

We have that θ̂ is an asymptotically unbiased estimator since, using the law of total
expectation

E(θ̂) = E(E(θ̂|X)) = E

(
E

(
1

m

m∑
i=1

(Zi4a− 2a) |X

))

= E

(
1

m

(
m∑
i=1

E(Zi|X)4a− 2a

))
= E

(
1

m

(
m∑
i=1

X
(i)

∗ + 2a

4a
4a− 2a

))

= E

(
1

m

m∑
i=1

X
(i)

∗

)
=

1

m

m∑
i=1

E(X
(i)

∗ ) = θ +O
(
e−

1
2na

2
)
. (16)

We now want to determine an upperbound for the expectation of the L2 distance of θ̂
from θ, in other words of

E((θ̂ − θ)2) = E(θ̂2) + θ2 − 2θE(θ̂)

(16)
= E(θ̂2) + θ2 − 2θ2 +O

(
e−

1
2na

2
)

= E

[ 1

m

m∑
i=1

(Zi4a− 2a)

]2
− θ2 +O

(
e−

1
2na

2
)

= E

[−2a+
4a

m

m∑
i=1

Zi

]2
− θ2 +O

(
e−

1
2na

2
)

= E

4a2 +

(
4a

m

m∑
i=1

Zi

)2

− 16a2

m

m∑
i=1

Zi

− θ2 +O
(
e−

1
2na

2
)

= 4a2 +
16a2

m2
E

( m∑
i=1

Zi

)2
− 16a2

m
E

(
m∑
i=1

Zi

)
− θ2 +O

(
e−

1
2na

2
)
.

(17)

We now want to find the unknown terms on the right hand side of Equation (17). Again
using the law of total expectation

E

(
m∑
i=1

Zi

)
=

m∑
i=1

E(E(Zi|X)) =

m∑
i=1

E

(
X

(i)

∗ + 2a

4a

)

=

m∑
i=1

E(X
(i)

∗ ) + 2a

4a
=
m(θ + 2a)

4a
+O

(
me−

1
2na

2
)
.

As a consequence we have

E2

(
m∑
i=1

Zi

)
=
m2(θ + 2a)2

16a2
+O

(
m2e−

1
2na

2
)
, (18)
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and by the law of total variance

E

( m∑
i=1

Zi

)2
 = Var

(
m∑
i=1

Zi

)
+ E2

(
m∑
i=1

Zi

)

= E

(
Var

(
m∑
i=1

Zi

∣∣∣X))+ Var

(
E

(
m∑
i=1

Zi

∣∣∣X))+ E2

(
m∑
i=1

Zi

)
.

(19)

Since the variance of the Bernoulli distribution with parameter p is given by p(1− p), the
first term on the right hand side of Equation (19) can be reformulated as

E

(
Var

(
m∑
i=1

Zi

∣∣∣X)) =

m∑
i=1

E

(
X

(i)

∗ + 2a

4a

(
1− X

(i)

∗ + 2a

4a

))

=
1

4a

m∑
i=1

E
(
X

(i)

∗ + 2a− 1

4a

(
(X

(i)

∗ )2 + (−2a)2 + 4aX
(i)

∗

))

=
1

4a

m∑
i=1

[
E
(
X

(i)

∗

)
+ 2a− 1

4a

(
E
(

(X
(i)

∗ )2
)

+ 4a2 + 4aE
(
X

(i)

∗

))]
(14)
=

1

4a

m∑
i=1

[
θ + 2a− 1

4a

(
E
(

(X
(i)

∗ )2
)

+ 4a2 + 4aθ
)]

+O
(
me−

1
2na

2
)

=
1

4a

m∑
i=1

[
a− 1

4a

(
Var

(
X

(i)

∗

)
+ E2

(
X

(i)

∗

))]
+O

(
me−

1
2na

2
)

(14)(15)
=

m

4a

[
a− 1

4a

(
1

n
+ θ2

)]
+O

(
m
√
ne−

1
2na

2
)
.

Using the independence of X
(i)

∗ and the properties of the variance, the second term on
the right hand side of Equation (19) can be written as

Var

(
E

(
m∑
i=1

Zi

∣∣∣X)) = Var

(
m∑
i=1

X
(i)

∗ + 2a

4a

)
=

1

16a2

m∑
i=1

Var
(
X

(i)

∗ + 2a
)

=
1

16a2

m∑
i=1

Var
(
X

(i)

∗

)
(15)
=

m

16na2
+O

(
m
√
ne−

1
2na

2
)
.

Then by substitution of the above into Equation (19) gives

E

( m∑
i=1

Zi

)2
 =

m

4a

(
a− 1

4a

(
1

n
+ θ2

))
+

m

16na2
+
m2(θ + 2a)2

16a2
+O

(
m2
√
ne−

1
2na

2
)

=
m

4a

(
a− θ2

4a

)
+
m2(θ + 2a)2

16a2
+O

(
m2
√
ne−

1
2na

2
)
. (20)
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Finally substituting Equation (18) and Equation (20) into Equation (17) gives

E((θ̂ − θ)2) =4a2 +
16a2

m2

[
m

4a

(
a− θ2

4a

)
+
m2(θ + 2a)2

16a2
+O

(
m2
√
ne−

1
2na

2
)]

− 16a2

m

[
m(θ + 2a)

4a
+O

(
me−

1
2na

2
)]
− θ2 +O

(
e−

1
2na

2
)

=4a2 +
4a

m

(
a− θ2

4a

)
+ (θ + 2a)2 − 4a(θ + 2a)− θ2 +O

(√
ne−

1
2na

2
)

=
1

m

(
4a2 − θ2

)
+O

(√
ne−

1
2na

2
)
.

This finishes the proof.

A.3 Proof of Lemma 6.1

Proof (Lemma 1 of [6]). Consider arbitrary 4 > 0 and arbitrary estimator θ̂. If V is a
random variable uniformly chosen from V, then we have

sup
P∈P

E
(
||θ̂ − θ(P )||22

)
≥ max

ν∈V
E
(
||θ̂ − θν ||22

)
≥ E

(
||θ̂ − θV ||22

)
≥ E

(
421{||θ̂−θV ||2≥4}

)
= 42P

(
||θ̂ − θV ||2 ≥ 4

)
, (21)

where the third inequality follows from

E(||θ̂ − θV ||22) =

∫
||θ̂ − θV ||22 dP

=

∫
{||θ̂−θV ||22≥42}

||θ̂ − θV ||22 dP +

∫
{||θ̂−θV ||22<42}

||θ̂ − θV ||22 dP

≥
∫
{||θ̂−θV ||22≥42}

||θ̂ − θV ||22 dP

≥ 42

∫
{||θ̂−θV ||2≥4}

1 dP

= 42E
(

1{||θ̂−θV ||2≥4}
)
.

We now lower bound P(||θ̂ − θV ||2 ≥ 4) from Equation (21) by considering

ν̂ := argminν∈V ||θ̂ − θν ||2.

Then ||θν̂ − θ̂||2 ≤ ||θ̂ − θV ||2. The triangle inequality implies that

||θν̂ − θV ||2 ≤ ||θν̂ − θ̂||2 + ||θ̂ − θV ||2 ≤ 2||θ̂ − θV ||2.

Recall that θν = δν where ν ∈ {−1, 1}d. We have that ||θν̂ − θV ||2 = 2δ
√
dham(ν̂, V ).

Combining this equation with inequality above implies that

if dham(ν̂, V ) > t then ||θ̂ − θV ||22 ≥ δ2(btc+ 1).
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Consequently,

P
(
||θ̂ − θV ||22 ≥ δ2(btc+ 1)

)
≥ P (dham(ν̂, V ) > t) . (22)

Combining the inequalities in Equation (21) and Equation (22) with ∆2 = δ2(btc + 1),
gives

sup
P∈P

E
(
||θ̂ − θV ||22

)
≥ δ2(btc+ 1)P (dham(ν̂, V ) > t) .

On the right hand side of the above inequality, taking infimum over all ν̂ ∈ V establishes
the result.

A.4 Proof of Lemma 6.2

Proof (Corollary 1 of [2]). Let V → X → ν̂ be a Markov chain, where V is uniform on
V. Let

Nmax
t := max

ν∈V
| {ν′ ∈ V : dham(ν, ν′) ≤ t} | and Nmin

t := min
ν∈V
| {ν′ ∈ V : dham(ν, ν′) ≤ t} |.

We note that Nmax
t = Nmin

t . We have |V| = 2d and Nmax
t =

∑t
i=0

(
d
i

)
.

Let ρ : V × V → R be a symmetric function defined on V × V . From [2, Corollary 1] if
V is uniform on V, (|V| −Nmin

t ) > Nmax
t and ν̂ ∈ V, then

P(ρ(ν̂, V ) > t) ≥ 1− I(V ;X) + 1

log2
|V|
Nmax
t

. (23)

We want to find t such that (|V| − Nmin
t ) > Nmax

t , so that we can use Equation (23).
Hence we want to find the largest t such that

t∑
i=0

(
d

i

)
<

1

2
2d. (24)

From the binomial theorem we have that 2d =
∑d
i=0

(
d
i

)
. For d even we have 2d =(

d
1
2d

)
+ 2

∑ 1
2d−1
i=0

(
d
i

)
. Then 1

22d >
∑ 1

2d−1
i=0

(
d
i

)
. So by choosing t ≤ 1

2d− 1, (or equivalently

t < 1
2d) we get Equation (24).

For d odd, we have that 2d = 2 ·
∑ 1

2 (d−1)
i=0

(
d
i

)
. Then 1

22d =
∑ 1

2 (d−1)
i=0

(
d
i

)
. By choosing

t < 1
2 (d− 1) we get Equation (24).

By taking t < 1
2 (d− 1) and t ≥ 1

4 we must take d ≥ 2. Then (|V| −Nmin
t ) > Nmax

t .

Now by Equation (23) we let ρ := dham giving

P(dham(ν̂, V ) > t) ≥ 1− I(V ;X) + 1

log2
|V|
Nmax
t

for t < 1
2 (d− 1) and d ≥ 2.
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A.5 Proof of Remark 1

Proof. Consider d ∈ N and fix 0 ≤ t ≤ d+1
3 .

We have that
(
d
i−1

)
=
(
d
i

)
i

d+1−i ≤
1
2

(
d
i

)
for 0 ≤ i ≤ d+1

3 , since

i

d+ 1− i
≤

d+1
3

d+ 1− d+1
3

=
d+ 1

3
· 3

2d+ 2
=

1

2
.

Then

Nmax
t =

t∑
i=0

(
d

i

)
≤ 1

2t

(
d

t

)
+

1

2t−1

(
d

t

)
+ ...+

1

2

(
d

t

)
+

(
d

t

)

≤
(
d

t

) ∞∑
i=0

1

2i

= 2

(
d

t

)
.

A.6 Proof of Remark 2

Proof. Since

et =

∞∑
i=0

ti

i!

we have et > tt

t! . Hence(
d

t

)
=

d!

(d− t)!t!
=
d · (d− 1) · · · (d− (t− 1))

t!
≤ dt

t!
≤
(
ed

t

)t
.

A.7 Proof of Lemma 6.3

Proof (Lemma 2 of [6]). Let d ≥ 9 and t ≤ d
6 ≤

d+1
3 . We note that

d

dt

(
de

t

)t
=

(
de

t

)t
ln

(
d

t

)
>

(
de

t

)t
ln (6) > 0, (25)
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so
(
de
t

)t
is increasing in t. By using Remark 1 and Remark 2 we have

log2

|V|
Nmax
t

≥ log2

(
2d

2
(
d
t

))

= d− log2

(
2

(
d

t

))
≥ d− log2

(
2

(
de

t

)t)
(25)

≥ d− log2

(
2

(
de

d/6

) d
6

)

= d− d

6
log2(6e)− 1

= d log2

(
2

(6e)
1
6 · 2 1

d

)
>
d

6
.

It can be checked that log2
|V|
Nmax
t

> d
6 holds for d < 8, however for better readability we

do not include it here.

Thus combining Lemma 6.1 and Lemma 6.2 using the Markov chain V → X → Y → θ̂,
we find that for t = d

6

sup
P∈P

E(||θ̂ − θ(P )||22) ≥ δ2(btc+ 1) inf
ν̂∈V

P(dham(ν̂, V ) > t)

≥ δ2(btc+ 1)

1− I(V ;X) + 1

log2
|V|
Nmax
t


≥ δ2(bd/6c+ 1)

(
1− I(V ;X) + 1

d/6

)
.

Since from Lemma 6.2 we have that t < 1
2 (d− 1), let us assume that d ≥ 3.

A.8 Proof of Lemma 6.4

Proof (Appendix A, Le Cam’s Method of [6]). We consider the d-dimensional case for

d ≤ 8. We note that V := {−1, 1}d. Define ν1 := (1, ..., 1) and ν−1 := (−1, ...,−1)
with vector length d. By taking the supremum over a smaller (or equal for d = 1) set{
Pν1 , Pν−1

}
⊂ {Pν}ν∈V we have

Mind(θ,P, B)
(5)

≥ inf
Π∈Aind(B,{Pν}ν∈V)

sup
P∈{Pν}ν∈V

EP
(
||θ̂Π(Y)− θ(P )||22

)
≥ inf

Π∈Aind(B,{Pν1 ,Pν−1})
sup

P∈{Pν1 ,Pν−1}
EP
(
||θ̂Π(Y)− θ(P )||22

)
(∗)
≥ δ2 1

2

(
1−

√
2I(V ; Y)

)
≥ δ2 d

16

(
1−

√
2I(V ; Y)

)
.

where (∗) follow from Le Cam’s Method of [6].
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A.9 Proof of Proposition 6.1

Proof (Appendix A, Tensorisation of information [6]). Consider a protocol Π such that
Yi is constructed based only on X(i). Then

I(V ; Y)
(3)
=

m∑
i=1

I(V ;Yi|Y1, Y2, ..., Yi−1)

(2)
=

m∑
i=1

H(Yi|Y1, ..., Yi−1)−H(Yi|V, Y1, ..., Yi−1)

≤
m∑
i=1

H(Yi)−H(Yi|V, Y1, ..., Yi−1)

=

m∑
i=1

H(Yi)−H(Yi|V )
(1)
=

m∑
i=1

I(V ;Yi),

where the inequality follows since conditioning reduces entropy, and in the last line we
use that the Yis are conditionally independent.

A.10 Proof of Theorem 6.8

Proof (Theorem 2 of [6]). We want to prove the lower bound for Mind(θ,Nd, B) given in
Theorem 6.8. To do this we will consider two cases, where the dimension d ≥ 9 and d < 9.
For d ≥ 9 we will use Lemma 6.3 to give the lower bound

Mind(θ,Nd, B) ≥ sup
P∈{Pν}ν∈V

E(||θ̂(Y)− θ(P )||22)

≥ δ2(bd/6c+ 1)

(
1− I(V ; Y) + 1

d/6

)
. (26)

For d < 9 we will use Lemma 6.4 to give the lower bound

Mind(θ,Nd, B) ≥ δ2 d

16

(
1−

√
2I(V ; Y)

)
. (27)

For both cases we need to find an upper bound for I(V ; Y). From Proposition 6.1 and
Lemma 6.7 we have

2

d
I(V ; Y) ≤ 2

d

m∑
i=1

I(V ;Yi)

≤ 2

d

m∑
i=1

nδ2

σ2
bi + dh

(
2 exp

(
− (a−

√
nδ)2

2σ2

))
+ 2d exp

(
− (a−

√
nδ)2

2σ2

)

=

m∑
i=1

[
2nδ2

dσ2
bi + 2h

(
2 exp

(
− (a−

√
nδ)2

2σ2

))
+ 4 exp

(
− (a−

√
nδ)2

2σ2

)]
,

(28)

where Y = (Y1, ..., Ym). We will upper bound all three terms in the summation on the
right of Equation (28). Choose a = 5σ

√
log2(m). For the first term in the summation
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choose δ2
1 ≤ dσ2

20
∑m
i=1 bin

. Then the first term is lower bounded by

m∑
i=1

2nδ2
1

dσ2
bi ≤

m∑
i=1

2bin

20
∑m
j=1 bjn

=
1

10
. (29)

For the second and third term choose δ2
2 ≤ σ2

400 log2(m)n . Note for log2(m) ≥ 1 we have
√
n√

log2(m)n
≤ 1, and

(a−
√
nδ2)2 =

(
5σ
√

log2(m)−
√
n

σ

20
√

log2(m)n

)2

=

(
5− 1

20 log2(m)

)2

σ2 log2(m)

≥
(

5− 1

20

)2

σ2 log2(m)

≥ 24σ2 log2(m).

For all −1 < x < 0 we have 2x
1+x < log2(1 + x). For m ≥ 2 we have −1 < −2m−12 < 0,

hence −4m−12

1−2m−12 < log2(1− 2m−12). Note that − log2(1− 2m−12) > 0. Thus

h(2m−12) = − log2(1− 2m−12)(1− 2m−12)− 2m−12 log2(2m−12)

≤ 4m−12

1− 2m−12
(1− 2m−12)− 2m−12 log2(2m−12)

= 4m−12 − 2m−12 log2(2m−12)

= 2m−12(2− log2(2m−12)).

Then for the upper bound on the second term on the right hand side of Equation (28) we
have

m∑
i=1

2h

(
2 exp

(
− (a−

√
nδ)2

2σ2

))
≤

m∑
i=1

2h

(
2 exp

(
−24σ2 log2(m)

2σ2

))

=

m∑
i=1

2h (2 exp (−12 log2(m)))

≤ 4m−11(2− log2(2m−12)). (30)

For the third term on the right hand side of Equation (28) we have

m∑
i=1

4 exp

(
− (a−

√
nδ2)2

2σ2

)
≤ 4m exp (−12 log2(m)) = 4m ·m−12 = 4m−11. (31)

Choose δ2 := min
{

1, σ2

400 log2(m)n ,
dσ2

20
∑m
i=1 bin

}
. Then the conditions of Lemma 6.7 are

satisfied since δ2 ≤ δ2
2 and

√
naδ2
σ2

≤
√
n

σ2
5σ
√

log2(m)
σ

20
√

log2(m)n
≤ 5
√
n

20
√
n
≤ 5

20
<

1.2564

4
.
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Let g(m) be the sum of the lower bounds found in (29), (30) and (31) giving

g(m) =
1

10
+ 4m−11(2− log2(2m−12)) + 4m−11

=
1

10
+ 4m−11(3− log2(2m−12)).

Then from Equation (28) we have

I(V ; Y) ≤
m∑
i=1

I(V ;Yi) ≤ g(m)
d

2
.

We note that g(3) < 0.1005 and that g(m) is a decreasing function for m ≥ 3, hence
g(m) < 0.1005 for m ≥ 3. Then 1− 6

d

(
g(m)d2 + 1

)
> 0 holds for m ≥ 3. Thus

I(V ; Y) < 0.1005 · d
2
. (32)

For the case d ≥ 9 we have that

1− 6

d
(I(V ; Y) + 1) > 1− 6

d

((
0.1005 · d

2

)
+ 1

)
> 0, (33)

where middle term is increasing in d.

We have that supP∈P EP (Li) ≤ Bi where Li is the number of bits required to encode Yi.
Then by Shannon’s coding theorem [1], we have H(Yi) ≤ Bi. Thus

bi = min

{
128

a2

σ2
H(Yi), d

}
= min {25 · 128H(Yi) log(m), d} ≤ min {25 · 128Bi log2(m), d} . (34)

We note that by algebraic manipulation we get

δ2 = min

{
1,

σ2

400 log2(m)n
,

dσ2

20
∑m
i=1 bin

}
≥ min

{
1,

σ2

400 log2(m)n
,

σ2

20
∑m
i=1 min

{
25 · 128 log2(m)Bid , 1

}
n

}

=
σ2

mn
min

{
mn

σ2
,

mn

400 log2(m)n
,

mn

20
∑m
i=1 min

{
25 · 128 log2(m)Bid , 1

}
n

}

≥ σ2

mn
min

{
mn

σ2
,

m

400 log2(m)
,

m

20 · 25 · 128
∑m
i=1 min

{
log2(m)Bid , 1

}}

≥ 1

20 · 25 · 128

σ2

mn
min

{
mn

σ2
,

m

log2(m)

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} . (35)
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Then for d ≥ 9 we have

Mind(θ,Nd, B)
(26)

≥ δ2

(⌊
d

6

⌋
+ 1

)(
1− 6

d
I(V ; Y)− 6

d

)
(33)

≥ δ2

(⌊
d

6

⌋
+ 1

)(
1− 6

(
0.1005 · 1

2

)
− 6

9

)
≥ δ2

(⌊
d

6

⌋
+ 1

)
0.0235

≥ δ2d
0.0235

6
(35)

≥ c1
σ2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} ,
where c1 = 0.0235

6 · 1
20·28·128 .

We now consider the case d < 9. We use from Equation (32) that I(V ; Y) < 0.1005 · d2 .

We note that
(

1−
√

0.1005d
)
> 0 for d < 9 and it is decreasing in d. Then(

1−
√

0.1005 · d
)
>
(

1−
√

0.1005 · 9
)
> 0.048.

From Lemma 6.4,

Mind(θ,Nd, B)
(27)

≥ δ2 d

16

(
1−

√
2I(V ; Y)

)
(32)

≥ δ2 d

16

(
1−

√
2 · 0.1005 · d

2

)

= δ2 d

16

(
1−
√

0.1005 · d
)

(35)

≥ c2
σ2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} , (36)

where c2 = 0.048 · 1
16 ·

1
20·25·128 .

For general d ∈ N we find that

Mind(θ,Nd, B) ≥ cσ
2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}}

where c = c2 < c1. We can write c as c = 4.6875 · 10−8.

A.11 Proof of Lemma 6.6

Proof. Let p(x) and q(x) be normal probability density functions where p(x) has mean µ
and variance σ2Id×d, and q(x) has mean m and variance σ2Id×d. With a little abuse of
notation we let p(xi) be a normal probability density function with mean µ and variance
σ2, and q(xi) be a normal probability density function with mean m and variance σ2. We
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have that
∫
p(xi) dxi = 1,

∫
(xi − µ)2p(xi) dxi = σ2 and

∫
(xi − µ)p(xi) dxi = 0. We have

p(x) =
1√

|2πσ2Id×d|
exp

(
−1

2
(x− µ)T (σ2Id×d)

−1(x− µ)

)
=

1√
2πσ2d

exp

(
− 1

2σ2
(x− µ)T (x− µ)

)
=

1√
2πσ2d

exp

(
− 1

2σ2

d∑
i=1

(xi − µi)2

)

=
1√

2πσ2d

d∏
i=1

exp

(
− 1

2σ2
(xi − µi)2

)
.

Similarly

q(x) =
1√

2πσ2d

d∏
i=1

exp

(
− 1

2σ2
(xi −mi)

2

)
.

Then

D(p||q) =

∫
p(x) log2

p(x)

q(x)
dx

=

∫
p(x) log2

 1√
2πσ2d

∏d
i=1 exp

(
− 1

2σ2 (xi − µi)2
)

1√
2πσ2d

∏d
i=1 exp

(
− 1

2σ2 (xi −mi)2
)
 dx

=

∫
p(x)

d∑
i=1

log2

(
exp

(
− 1

2σ2 (xi − µi)2
)

exp
(
− 1

2σ2 (xi −mi)2
)) dx

=

∫
p(x)

d∑
i=1

(
− 1

2σ2
(xi − µi)2 +

1

2σ2
(xi −mi)

2

)
dx

=

d∑
i=1

(
− 1

2σ2

∫
p(x)(xi − µi)2 dx +

1

2σ2

∫
p(x)(xi −mi)

2 dx

)

=

d∑
i=1

(
− σ2

2σ2
+

1

2σ2

∫
p(x)(xi − µi + µi −mi)

2 dx

)

=

d∑
i=1

(
− 1

2
+

1

2σ2

(∫
p(xi)(xi − µi)2 dxi +

∫
p(xi)(µi −mi)

2 dxi

− 2(µi −mi)

∫
p(xi)(xi − µi) dxi

))
=

1

2

d∑
i=1

(
−1 +

1

σ2

(
σ2 + (µi −mi)

2
))

=
1

2σ2

d∑
i=1

(µi −mi)
2.
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A.12 Proof of Lemma 7.1

Proof. Let p(x) and q(x) be Laplace probability density functions with p(x) = 1
2b exp

(
− |x−µ|b

)
and q(x) = 1

2b exp
(
− |x−m|b

)
, where µ,m ∈ R are the locations and b ∈ R>0 is the scale.

Define t := x− µ, then dx = dt. We have∫
p(x)|x− µ| dx =

1

2b

∫
|x− µ| exp

(
−|x− µ|

b

)
dx

=
1

2b

∫
|t| exp

(
−|t|
b

)
dt

=
1

2b

(
−
∫ 0

−∞
t exp

(
t

b

)
dt+

∫ ∞
0

t exp

(
− t
b

)
dt

)
=

1

2b

(∫ ∞
0

t exp

(
− t
b

)
dt+

∫ ∞
0

t exp

(
− t
b

)
dt

)
=

1

b

∫ ∞
0

t exp

(
− t
b

)
dt

=
1

b
b2 = b.

Define µ − m := k. We consider two separate cases, firstly where k ≥ 0 and secondly
where k < 0. Suppose k ≥ 0. By splitting the integral into intervals to remove the
absolute signs and applying integration by parts we get∫

p(x)|x−m|dx =
1

2b

∫
|x−m| exp

(
−|x− µ|

b

)
dx

=
1

2b

∫
|t+ k| exp

(
−|t|
b

)
dt

=
1

2b

(∫ 0

−∞
|t+ k| exp

(
t

b

)
dt+

∫ ∞
0

|t+ k| exp

(
−t
b

)
dt

)
=

1

2b

(
−
∫ −k
−∞

(t+ k) exp

(
t

b

)
dt+

∫ 0

−k
(t+ k) exp

(
t

b

)
dt

+

∫ ∞
0

(t+ k) exp

(
− t
b

)
dt

)
=

1

2b

((
b2e−

k
b

)
+
(
b2(e−

k
b − 1) + kb

)
+
(
b2 + bk

))
=

1

2b

(
2b2e−

k
b + 2kb

)
= be−

k
b + k = µ−m+ be

m−µ
b .
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Then

D(p||q) =

∫
p(x) log2

p(x)

q(x)
dx

=

∫
p(x) log2

 1
2b exp

(
− |x−µ|b

)
1
2b exp

(
− |x−m|b

)


=

∫
p(x)

(
−|x− µ|

b
+
|x−m|

b

)
dx

= −1

b

∫
p(x)|x− µ| dx+

1

b

∫
p(x)|x−m| dx

= −1

b
(b) +

1

b

(
µ−m+ be

m−µ
b

)
= e

m−µ
b +

µ−m
b
− 1.

Suppose that k > 0, then using the same method as before we get∫
p(x)|x−m|dx =

1

2b

∫
|x−m|e−

|x−µ|
b dx

=
1

2b

∫
|t+ µ−m|e−

|t|
b dt

=
1

2b

(∫ 0

−∞
|t− k|e tb dt+

∫ ∞
0

|t− k|e− tb dt
)

=
1

2b

(
−
∫ 0

−∞
(t− k)e

t
b dt−

∫ k

0

(t− k)e−
t
b dt+

∫ ∞
k

(t− k)e−
t
b dt

)

=
1

2b

((
b2 + bk

)
+
(
b2e−

k
b − b2 + bk

)
+
(
b2e−

k
b

))
= k + be−

k
b

= m− µ+ be
µ−m
b .

Then similarly

D(p||q) = −1

b

∫
p(x)|x− µ| dx+

1

b

∫
p(x)|x−m| dx

= −1

b
(b) +

1

b

(
m− µ+ be

µ−m
b

)
= e

µ−m
b +

m− µ
b
− 1.

It follows for all k that

D(p||q) = e−
|µ−m|
b +

|µ−m|
b

− 1.
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A.13 Proof of Lemma 7.3

Proof. Inequality (7) is the consequence of two intermediate upper bounds, which we
prove separately:

I(V ;Yi) ≤
δ2dn

b2
(37)

I(V ;Yi) ≤ 128
nδ2a2

b2
I(X(i);Yi) + dh

(
2 exp

(
−a

2

32

))
+ 2d exp

(
−a

2

32

)
. (38)

We note that V → X(i) → Yi forms a Markov chain. We have that for arbitrary k ∈
{1, ..., n}

I(V ;Yi) ≤ I(V ;X(i)) ≤
n∑
j=1

I(V ;X(i,j)) = nI(V ;X(i,k))

where Theorem 5.2 gives the first inequality, Proposition 6.1 the second, and the final
equality is since the X(i,j)’s are identical for j ∈ {1, ..., n}.

We note that by the Taylor expansion

e−
1
b ||δν−δν

′||1 = 1− 1

b
||δν − δν′||1 +

1

2b2
||δν − δν′||21 −

1

6b3
||δν − δν′||31eζ ,

where ζ ∈ (− 1
b ||δν − δν

′||1, 0). Then ζ < 0 so 0 < eζ < 1. Thus

− 1

6b3
||δν − δν′||31eζ < 0.

Let Pν denote the conditional distribution of X(i,j) given V = ν. By the above we have

D(Pν ||Pν′) = e−
1
b ||δν−δν

′||1 +
1

b
||δν − δν′||1 − 1

≤ 1− 1

b
||δν − δν′||1 +

1

2b2
||δν − δν′||21 +

1

b
||δν − δν′||1 − 1

=
δ2

2b2
||ν − ν′||21.

For ν ∈ V we have∑
ν′∈V
||ν − ν′||21 =

1

2

(∑
ν′∈V
||ν − ν′||21 +

∑
ν′∈V
||ν + ν′||21

)
=

1

2

∑
ν′∈V

4d = 2d|V|.

Thus ∑
ν,ν′∈V

||ν − ν′||21 = 2d|V|2.

Remark 4. Consider two random variables X and Y with joint probability density p(x, y).

Let p(x|y) = p(x,y)
p(y) . Then

I(X;Y ) =
∑
y

p(y)
∑
x

p(x|y) log2

p(x|y)

p(x)

=
∑
y

p(y) D(p(x|y)‖p(x))

= EY (D(p(x|y)‖p(x))) .
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Let P denote the distribution of X(i,j). From Remark 4 we have

I(V ;X(i,j)) =
1

|V|
∑
ν∈V

D(Pν‖P )

=
1

|V|
∑
ν∈V

D

(
Pν

∥∥∥ 1

|V|
∑
ν′∈V

Pν′

)

≤ 1

|V|2
∑
ν,ν′∈V

D (Pν‖Pν′) . (39)

Then using the Kullback-Leiber divergence for the multivariate Laplace given in Lemma 7.2,
we have

I(V ;X(i,j))
(39)

≤ 1

|V|2
∑
ν,ν′∈V

D(Pν ||Pν′)

≤ 1

|V|2
∑
ν,ν′∈V

δ2

2b2
||ν − ν′||21

≤ δ2d

b2
.

This establishes the inequality in Equation (37). To prove the inequality in Equation (38),
we apply Lemma 6.5.

Take a ratio of the densities of two Laplace distributions with n independent samples,
one with mean δ and the other with mean −δ, both with location parameter b. We have

exp
(
− 1
b

∑n
l=1 |xl − δ|

)
exp

(
− 1
b

∑n
l=1 |xl + δ|

) = exp

(
1

b

n∑
l=1

|xl + δ| − |xl − δ|

)
≤ exp

(
δ
√
na

b

)
,

whenever
∑n
l=1 |xl + δ| − |xl − δ| ≤ δ

√
na for some a ∈ R. Taking the sets

S0 :=

{
x ∈ Rn :

n∑
l=1

|xl + δ| − |xl − δ| ≤ δ
√
na

}
,

satisfies the conditions of Lemma 6.5 with α = δ
√
na/b. When α ≤ 1.2564 we have

exp(α)−1 ≤ 2α. Then exp(4α)−1 = exp(4δ
√
na/b)−1 ≤ 8δ

√
na/b. Hence 2(e4α−1)2 ≤

2(8δ
√
na/b)2 = 128nδ2a2/b2. Let us take Ej = 1

X
(i)
j ∈S0

for some i. Then from Lemma 6.5

we have

I(V ;Yi) ≤ 128
nδ2a2

b2
I(X(i);Yi) +

d∑
j=1

H(Ej) +

d∑
j=1

P(Ej = 0).

We have
n∑
l=1

|xl + δ| − |xl − δ| =
n∑
l=1

2δ · 1xl>δ − 2δ · 1xl<−δ + 2xl · 1−δ<xl<δ

= δ

n∑
l=1

2 · 1xl>δ − 2 · 1xl<−δ +
2xl
δ
· 1−δ<xl<δ

= δ

n∑
l=1

(Cl +Dl),
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where Cl := 2 · 1xl>δ − 2 · 1xl<−δ and Dl := 2xl
δ · 1−δ<xl<δ. Note that E (Cl) = 0 and

E (Dl) = 0 from symmetry since xl’s have mean 0. The variance of the random variables
Cl and Dl can be bounded from above as

Var(Cl) = E
(
(Cl − E(Cl))

2
)

= E
(
C2
l

)
= 4E

(
(1xl>δ − 1xl<−δ)

2
)

= 4E (1xl>δ + 1xl<−δ) = 4 (P (1xl>δ) + P (1xl<−δ))

= 4cl,

for some constant 0 < cl < 1 close to 1. Furthermore

Var(Dl) = E
(
(Dl − E(Dl))

2
)

= E
(
D2
l

)
=

4

δ2
E
(

(xl · 1−δ<xl<δ)
2
)
≤ 4.

Since the Cl’s and Dl’s are i.i.d. random variables, from the central limit theorem
√
n

n

n∑
l=1

Cl
d−→ N(0, σ2

1),

√
n

n

n∑
l=1

Dl
d−→ N(0, σ2

2),

where σ2
1 , σ

2
2 ≤ 4. Let Z1, Z2 ∼ N(0, 1). Then

P(Ej = 0) = P(X
(i)
j /∈ Bi) = P

(
δ

n∑
l=1

(Cl +Dl) > δ
√
na

)

= P

(√
n

n

n∑
l=1

(Cl +Dl) > a

)
≈ P(σ1Z1 + σ2Z2 > a)

≤ P
(
Z1 >

a

2σ1

)
+ P

(
Z2 >

a

2σ2

)
≤ exp

(
−1

2

a2

4σ2
1

)
+ exp

(
−1

2

a2

4σ2
2

)
= 2 exp

(
−a

2

32

)
.

Then

I(V ;Yi) ≤ 128
nδ2a2

b2
I(X(i);Yi) +

d∑
j=1

H(Ej) +

d∑
j=1

P(Ej = 0)

≤ 128
nδ2a2

b2
I(X(i);Yi) + dh

(
2 exp

(
−a

2

32

))
+ 2d exp

(
−a

2

32

)
.

Note that I(X(i);Yi) = H(Yi) − H(Yi|X(i)),and therefore I(X(i);Yi) ≤ H(Yi). From
Equation (37) we get

I(V ;Yi) ≤
nδ2

b2
min

{
128a2H(Yi), d

}
+ dh

(
2 exp

(
−a

2

32

))
+ 2d exp

(
−a

2

32

)
.

A.14 Proof of Theorem 7.4

Proof. We want to prove the lower bound for Mind(θ,Ld, B) given in Theorem 7.4. This
proof follows the same structure as the proof for Theorem 6.8 given in Section A.10 where

44



we split the proof into 2 cases, for d ≥ 9 and for d < 9. However, now instead of applying
Lemma 6.7 for the normal means model, we apply Lemma 7.3 for the Laplace means
model.

For both cases we need to find an upper bound for I(V ; Y). From Proposition 6.1 and
Lemma 7.3 we have

2

d

m∑
i=1

I(V ; Y) ≤ 2

d

m∑
i=1

I(V ;Yi)

≤
m∑
i=1

[
dnδ2

2b2
bi + 2h

(
2 exp

(
−a

2

32

))
+ 4 exp

(
−a

2

32

)]
, (40)

where bi = min
{

128a2H(Yi), d
}

. We will upper bound all three terms in the summation

on the right of Equation (40). Choose a =
√

320 · log2(m). For the first term choose

δ2
1 ≤ db2

20
∑m
i=1 bin

. Then we have

m∑
i=1

2nδ2
1

db2
bi ≤

m∑
i=1

2bin

20
∑m
j=1 bjnj

=
1

10
. (41)

Similarly to Section A.10 for m ≥ 2 we have

h(2m−10) ≤ 2m−10(2− log2(2m−10)). (42)

Then for the upper bound on the second term on the right hand side of Equation (40) we
have

m∑
i=1

2h

(
2 exp

(
−a

2

32

))
= 2mh

(
2 exp

(
−320 log2(m)

32

))
= 2mh

(
2m−10

)
≤ 4m−9(2− log2(2m−10)). (43)

For the third term on the right hand side of Equation (40) we have

m∑
i=1

4 exp

(
−a

2

32

)
=

m∑
i=1

4 exp

(
−320 log2(m)

32

)
=

m∑
i=1

4m−10 = 4m−9. (44)

Choose δ2
2 := 1

3245 log2(m)n and δ2 := min
{

1, δ2
1 , δ

2
2

}
. Then the conditions of Lemma 7.3

are satisfied since δ2 ≤ δ2
2 and

√
naδ2
b

≤
√
n

b

√
320 · log2(m)

1√
3245 · log2(m)n

≤
√

320

3245
<

1.2564

4
.

Let g(m) be the sum of the lower bounds found in (41), (43) and (44) giving

g(m) =
1

10
+ 4m−9(2− log2(2m−10)) + 4m−9

=
1

10
+ 4m−9(3− log2(2m−10)).

Then from Equation (40) we have

I(V ; Y) ≤
m∑
i=1

I(V ;Yi) ≤ g(m)
d

2
.
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Similarly to Equation (32), we have g(m) < 0.104 for m ≥ 3. Thus

I(V ; Y) < 0.104 · d
2
. (45)

Similarly to Equation (34) we have

bi = min
{

128a2H(Yi), d
}
≤ min {128 · 320 · log2(m)Bi, d} .

From Lemma 6.3 we have

sup
P∈{Pν}ν∈V

E
[
||θ̂(Y )− θ(P )||22

]
≥ δ2

(⌊
d

6

⌋
+ 1

)(
1− 6

d
I(V ; Y)− 6

d

)
. (46)

Similar to in Equation (35) we have

δ2 = min

{
1,

1

3245 log2(m)n
,

db2

20
∑m
i=1 bin

}
≥ 1

20 · 128 · 320

σ2

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} . (47)

Then for d ≥ 9

Mind(θ,Ld, B)
(26)

≥ δ2

(⌊
d

6

⌋
+ 1

)(
1− 6

d
I(V ; Y)− 6

d

)
(45)

≥ δ2

(⌊
d

6

⌋
+ 1

)(
1− 6

(
0.104 · 1

2

)
− 6

9

)
≥ δ2

(⌊
d

6

⌋
+ 1

)
0.021

≥ δ2d
0.021

6
(47)

≥ c1
σ2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} ,
where c1 = 0.021

6 · 1
20·128·320 .

We now consider the case d < 9. We use from above that I(V ; Y) < 0.104 · d2 .

We note that
(

1−
√

0.104d
)
> 0 for d < 9 and it is decreasing in d. Then(

1−
√

0.104 · d
)
>
(

1−
√

0.104 · 9
)
> 0.032.

From Lemma 6.4,

Mind(θ,Ld, B)
(27)

≥ δ2 d

16

(
1−

√
2I(V ; Y)

)
(45)

≥ δ2 d

16

(
1−

√
2 · 0.104 · d

2

)

= δ2 d

16

(
1−
√

0.104 · d
)

(47)

≥ c2
σ2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}} ,
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where c2 = 0.032 · 1
16 ·

1
20·128·320 .

For general d ∈ N we find that

Mind(θ,Ld, B) ≥ cσ
2d

mn
min

{
mn

σ2
,

m

log2(m)
,

m

log2(m)
∑m
i=1 min

{
Bi
d , 1

}}

where c := 2.44 · 10−9 < c2 < c1, where c is equal to c2 rounded down to 3 significant
figures.
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