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1 Introduction

The development of new time-series simulations is an essential part of risk management. Neural
networks offer the possibility to produce expertly tuned models at a much lower price. Instead
of creating a stochastic model that encapsulates all the properties of the time-series data, a neural
network is capable of learning these facts simply by training on historical data.

In financial risk management, the simulation of market scenarios can be used to price assets and
to estimate the exposure of one’s portfolio. In the simulation of market scenarios, the statistical
properties of past observed market behaviour are reproduced. These properties, referred to as stylised
facts, can include: the short end of an interest rate curve is more volatile than its long end, volatility
smile is more pronounced for options with a shorter time to expiry, and futures curves have a
certain amount of smoothness. Realistic market scenarios would also have to conform to no-arbitrage
constraints. Typical simulations of realistic futures market evolutions are done using models calibrated
to historical data. The model is constructed such that it displays the desired properties. There are
many drawbacks with this approach: the stylised facts need to be known, important features can be
missing if they are hard to detect, and the model may not be able to produce certain, possibly likely
market configurations. Such a model should be frequently checked against new data to determine
whether the model still reflects the properties of the data.

A new possibility to generate futures market scenarios is to use neural networks that can be trained
to output realistic-looking scenarios. Neural networks can learn features existing in historical data
and can be retrained on the most recent historical data without having to recreate the model to factor
in new features. A neural network could capture the stylised facts of the data without them being
directly incorporated in the model, thereby overcoming some of the difficulties of standard models.
The primary focus of the project is to create a simulation engine for futures curves that produces
realistic market scenarios. The secondary focus is to consider how to account for cases where some
data points, or the entire underlying product except for some data points, are missing. In complex
systems, historical prices of various financial products are aggregated from many sources, and it
is often the case that there are pricing discrepancies between sources and incorrect prices in the
data. The historical prices may be used in many models, and as such the correctness of the data is
imperative. One of the fundamental properties of neural networks is that they are very capable in
capturing important attributes of a dataset. A neural network trained on realistic data can be used
to spot unrealistic patterns in historical data that it has not been trained on. This is useful to detect
errors in given data and to test the performance of a model capable of simulating market scenarios.
Automating this process would help an otherwise labour-intensive task.

Before formally introducing neural network models, an analysis is made about the history of oil prices
in Section 1.1 along with previous work in this field in Section 1.2. In Section 2 oil products and
futures contracts are examined, and data exploration is carried out. In Section 3 the SMAPE metric to
measure the performance of simulations is inspected, the benchmark stochastic two-factor Andersen
Markov model is introduced, and principal component analysis is explored for dimension reduction.
Neural network concepts are introduced in Section 4, focussing on the configuration of training,
validation and test sets, and the fundamental mathematics of a simple feedforward neural network. The
concepts are built upon in Section 5 where specialised types of neural networks are investigated. The
networks considered include autoencoders, generative adversarial networks, and recurrent networks.
For each of these, a multitude of variations is explored. These are critical for dimension reduction of
time-series and for simulating time-series. Necessary data preparation techniques are discussed in
Section 6, these are required to optimise the performance of the neural networks. The main techniques
studied concern standardisation, normalisation, and taking log-returns. Dimension reduction of
time-series of futures is investigated in Section 7. Data preparation techniques are combined with
autoencoders from Section 5 and principal component analysis (PCA) from Section 3.3 in order to
achieve this. In Section 8, generative adversarial networks are used in combination with theory from
Sections 5 and 7 to simulate time-series of futures curves. Experimentation using recurrent neural
networks (RNNs) to try to simulate time-series data is done in Section 9. In Section 10 time-series
data with missing values is examined, and a method based on the work in Section 5.2 is used to fill
in the missing data. The usefulness in this model comes from that the model can also be trained on
data containing missing values. Using autoencoder models, methods to detect unrealistic parts of a
time-series are studied in Section 11. The final conclusion and remarks for future research are made
in Section 12. In Appendix A mathematical concepts that are used in Section 4 and in Section 5 are
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explained. The technical details for how the Andersen Markov model in Section 3.2 is calibrated, is
given in Appendix B.

1.1 A Short History of Oil Prices

Oil prices are highly volatile. The reasons behind this are a combination of war, politics, limited
availability and it being a highly sought after resource. The demand and supply are linked strongly
to the political and economic behaviour of unstable countries and is correlated with events such as
military conflicts and natural disasters [Barunik et al. 2015].

At the beginning of the 20th century, oil emerged as the preferred energy source over burning coal.
This shift was lead by petroleum being more flexible than coal and its key use in vehicles, from
aeroplanes to ships, to cars. The US was the dominant player in the market and the price of oil was
fixed at the Gulf of Mexico. In the 1950s oil-producing nations, particularly in the middle east and in
South America saw oil companies operating in their countries and began to exercise authority and
control over their countries’ oil resources. In 1960 the governments of Venezuela, Saudi Arabia,
Kuwait, Iraq, and Iran founded the Organisation of the Petroleum Exporting Countries (OPEC) for
negotiating with oil companies on oil production and prices. Saudi Arabia has the majority of OPEC
reserves, followed by Iran and Venezuela [Interactive 2019].

During 2000-2008 the price of oil rose significantly from $20 to $140 per barrel and was explained
by the rise in demand by countries such as China and India [Mouawad 2007]. The price rise could
also be attributed to the US invasion of Iraq [Wiemer 2015]. During the financial crisis in 2008, the
price dropped from $140 to $30, rebounding back to $80 per barrel. Until 2014 the price stayed in
the range of $90 to $120 per barrel, this could be attributed to the OPEC that acts as a cartel, fixing
the price of oil and implementing quotas. In 2014 the price started declining due to an increase in
production and a decline in demand. As well as this, OPEC countries exceeded their quotas and
caused an oversupply driving down prices. Countries such as Saudi Arabia and Russia depend on
their oil exports, causing them to increase production and further decrease prices. By 2016 the price
was at $30 per barrel. Between 2016 and 2018 the price of oil rose dramatically to $70 per barrel due
to OPEC quotas.

In the last 20 years, unconventional methods for oil and gas production have sprung up around the
world in the forms of horizontal drilling, offshore drilling, and hydraulic fracturing. These techniques
have created a low-cost alternative to compete against OPEC and have turned countries such as the
US from an oil and gas importer to exporter.

In order to forecast futures oil prices, it is necessary to consider political and economic behaviour
around the world, however modelling such aspects are out of the scope of this project. The aim of
this paper is to simulate possible scenarios of futures oil prices based solely on historical data.

1.2 Previous Work

The work of Ahmed et al. [2010] presents a comparison study for some of the major machine learning
models for time-series forecasting. The methods are tested on the monthly M3 time-series competition
data [Forecasters 2000] consisting of around 1000 time-series. The neural networks considered are
the multilayer perceptron (MLP) (explained in Section 4.2), the Bayesian neural network (BNN),
the Radial Basis Function Neural Network (RBF), and the Generalised Regression Neural Network
(GRNN). Further models considered were the K Nearest Neighbour Regression (KNN), Classification
and Regression Trees (CART), Support Vector Regression (SVR), and Gaussian Processes (GP). The
most computationally demanding models were BNN and MLP, however in most cases, the extra
computation time required was not an issue. They conclude that the best models were MLP and GP.
The MLP yielded good results because it can be reduced to a linear model and this is in agreement
with the results from the M3 competition where simple models tend to outperform complex models.

In Fu et al. [2019] the conditional GAN (see Section 5.2.2) is examined for its ability to simulate
time-series. Data is simulated according to the vector autoregressive model (VAR) and it is found that
the CGAN is able to learn the dependent structure of the VAR time-series and the heavy tails of the
underlying noise. In another analysis, 1-day stock returns are examined where the data is split into
stressed and normal periods, where the stressed period concerns the time of the 2008 financial crisis.
It is found that the CGAN is able to outperform the historical simulation method for the calculation
of value-at-risk (VaR).
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In Zhou et al. [2018] Long Short-Term Memory (LSTM) (see Section 5.4.1) and convolutional neural
networks (CNN) (see Section 5.3) are used as the generator and discriminator network respectively in
a GAN (see Section 5.2.1) to forecast the high-frequency stock market. The model created is called
GAN-FD and it uses 13 technical indexers as input data and it forecasts the next day price. The
intuition given behind this model is that a trader usually predicts the stock price through the available
indicator data, which is what the generative model G does, and he judges the correctness of his own
forecast using the previous stock price, which is what the discriminative model D does.

Uber has used LSTM neural networks for time-series forecasting [Laptev et al. 2017], specifically for
extreme event simulation. LSTMs were chosen because they can model complex interactions in the
data. They use the SMAPE metric to measure the model error. The same metric is applied to measure
the performance of the models in this paper (see Definition 3.1).

Facebook has created a forecasting tool [Taylor et al. 2017] that is easy to use for analysts. It
is a regression model with trend, seasonality, and holidays components. The model can easily
accommodate new seasonality components. The model has the advantage over models such as
ARIMA in that it does not require regularly spaced data measurements. Furthermore, fitting is fast
and the model has easily interpretable parameters.

Machine learning techniques have been extremely successful at solving difficult real-world problems
in the realms of autonomous vehicles, intelligent robots, image recognition, speech recognition, and
language translations. Seeing these successes, machine learning techniques are attempted to be used
for every problem where instead traditional models may perform better. In Makridakis et al. [2018]
concerns with using machine learning methods for forecasting are examined. They note that in the
literature, many published studies do not satisfactorily compare the machine learning model with
simple statistical methods and that the data used in a study is in many cases not publicly available
making it difficult to replicate the results. Furthermore, they remark that machine learning methods
should be capable of specifying the uncertainty around them or provide confidence intervals. In
Makridakis et al. [2018, Section 4] it is shown that statistical methods such as ARIMA and Theta
obtain better forecasting performance compared to many popular machine learning methods such as
GP, RNN, KNN, LSTM, and CART.

To conclude, it is important to compare neural network time-series simulation methods with a
benchmark model. This is in order to show whether the examined neural network techniques give
reasonable results, and possibly make improvements in the field of time-series simulation.
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2 Analysis of Oil Futures

In this section, the historical oil and gas futures time-series data available is examined. The definition
of a futures contract is given, it is shown how this relates to a futures curve, and what the standard
properties of a futures curve are.

2.1 Oil Products

Crude oil extracted from the ground in its unrefined state varies in density, consistency and sulphur
content. Density ranges from light to heavy, while sulphur content is characterised as sweet or sour.
API gravity is a measure of how heavy or light oil is compared to water and it is an inverse measure
to its density. The API gravity of water is 19◦. Crude oil is classified as light, medium, or heavy
according to its measured API gravity. In general, the higher the API gravity, the more valuable the
crude oil. The classification of crude oil is given by:

• Light crude oil has an API gravity higher than 31.1◦ and it has short hydrocarbon chains.
• Medium oil has an API gravity between 22.3◦ and 31.1◦.
• Heavy crude oil has an API gravity below 22.3◦ and it has long hydrocarbon chains.

Crude is considered sweet if it is low in sulphur content (< 0.5%), or sour if high (> 1.0%). Crude
oils that are light and sweet are usually priced higher than heavy, sour crude oils because they can be
processed with less sophisticated and less energy-intensive refineries, and they can easily and cheaply
be used to make petrol. In Fig. 2.1 a graph shows the relation between sweet/sour and heavy/light
oils and where they are extracted.

Figure 2.1: Source: Administration [2012]. Crude oils, sweet and sour vs. heavy and
light. WTI = West Texas Intermediate; LLS = Louisiana Light Sweet; FSU = Former
Soviet Union; UAE = United Arab Emirates.

A benchmark crude oil is a crude oil that acts as a reference price for buyers and sellers of crude oil.
They are used because there are many varieties and grades of crude oil, so benchmarks allow for easy
referencing for buyers and sellers. The main benchmark crude oils are

• West Texas Intermediate (WTI), United States, Oklahoma
• Brent Blend, United Kingdom, North Sea
• Dubai Crude, United Arab Emirates, Dubai.

The oil commodities for which futures time-series data is available are given in Table 2.1. The
products consist of crude oils Brent and WTI, and a selection of refined oils.

9



Product Description API Gravity Sulphur Content

Brent ICE North Sea oil traded on the Interconti-
nental Exchange (ICE)

38.3◦ 0.37%

Brent Dated Physical cargoes of crude oil in the
North Sea that have been assigned spe-
cific delivery dates.

38.3◦ 0.37%

WTI NYMEX West Texas Intermediate, listed on
the New York Mercantile Exchange
(NYMEX)

39.6◦ 0.24%

F35 ROT FB Fuel Oil FOB Barges Rotterdam - 3.5%
GO01 ROT FB Gas oil FOB Barges Rotterdam - 0.1%
HSFO380 SGP FC Fuel Oil FOB Cargoes Singapore - 3.8%
JK ROT FB Jet Fuel FOB Rotterdam ≈ 42◦ 0.37%

Table 2.1: A list of the oil commodity data used in this paper. FOB stands for free on board and
specifies at which points the costs involved with the delivery of the goods shift from the seller to the
buyer.

2.2 Futures Curve and Futures Contracts

Futures contracts (Definition 2.1) are negotiated at futures exchanges that serve as a marketplace
between buyers and sellers. They are standardised contracts and can only be traded on a futures
exchange.
Definition 2.1 (Futures Contract). A futures contract is a standardised forward contract between two
parties to buy or sell an asset at a specified date in the future at a price agreed upon today.

The buyer of the contract is called the long position holder, while the seller is called the short position
holder. The Futures exchange requires both parties to put up initial cash, known as the margin, usually
a percentage of the value of the futures contract. The margin must be maintained throughout the life
of the contract. The product is marked to market daily, which means that the difference between the
agreed upon price and the daily futures price is re-evaluated daily. The exchange will take money out
of the losing party’s margin account and put it in the other party’s account. On the delivery date, only
the spot value is exchanged.

The first futures market appeared in the 17th and 18th centuries in Holland [Goetzmann et al. 2008]
and it helped lay the foundations of the modern financial system. The original use for futures contracts
was to mitigate the risk of price movements by allowing parties to fix future prices today. This allows
a party to be protected against unfavourable price movements for a product that they require in the
future.

The maturity is the date of expiry of a contract, and a tenor is the duration left until expiry of a
contract. The price of a futures contract at time t with tenor T is written as the function F (t, T ). For
simplification of the Andersen Markov Model (Section 3.2), F̂ (t, t+T ) := F (t, T ) is defined, where
the t+ T can be treated as a date. In Table 2.2 there is an example of a historical futures contract.
For the first entry, the historical date is t = 2-1-2018 and tenor T = 29, the duration in days between
the t and the expiry date 31-1-2018. From a list of historical futures contracts such as in Table 2.2 a
futures curve as defined in Definition 2.2 can be created.
Definition 2.2 (Futures curve). Fix a historical date t. Consider a sequence of tenors (T1, ..., Tn) ∈
Nn given in days. Usually T1 = 0 and Ti+1 − Ti = 30, representing 30 day intervals. The futures
curve at time t is given by (F (t, Tj))j=1,...,n. If there is no futures contract giving a value for
F (t, Tj), then F (t, Tj) is estimated by the linear interpolation of nearest existing tenors R,S ∈ N
such that R < Tj < S.

A futures curve shows the current price for the underlying to be delivered at maturity. It is not a
forecast of futures spot prices, but the reflection of the view of the market at that time. Futures curves
have typical forms that they take with a few examples given in Fig. 2.2. A downward sloping curve,
where the forward price is lower than the spot price is called backwardation. An upward sloping
curve, where the forward price is higher than the spot price is called contango. Usually, futures

10



Commodity Name Historic Date Price Contract Name Expiry

CO1 Comdty 2-1-2018 66.57 COH8 31-1-2018
CO1 Comdty 3-1-2018 67.84 COH8 31-1-2018
CO1 Comdty 4-1-2018 68.07 COH8 31-1-2018

...
...

...
...

...
CO1 Comdty 29-1-2018 69.46 COH8 31-1-2018
CO1 Comdty 30-1-2018 69.02 COH8 31-1-2018
CO1 Comdty 31-1-2018 69.05 COH8 31-1-2018

Table 2.2: Some prices of a futures contract for Brent Crude (ICE) with commodity name ‘CO1
Comdty’ and contract name ‘COH8’ in Bloomberg.

curves are simply in contango or backwardation like in the 2014-08-01 and 2015-10-07 examples.
Due to some uncertainty in the prices for a small time frame, some futures curves e.g. 2016-12-02
and 2017-04-21 examples have a local maximum.
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Figure 2.2: Types of futures curves. In this figure, a selection of different shaped futures
curves from historical data are shown. The curves come from the WTI NYMEX dataset.

Consider a time-series given by a sequence of dates (t1, ..., tm), with futures curves as given in
Definition 2.3.
Definition 2.3 (Time-series of futures curves). A time-series of futures curves is given by an m×
n matrix X with the columns representing tenors (T1, ..., Tn) and the rows representing dates
(t1, ..., tm). Then each row i is given by the futures curve at time ti. In other words, Xij = F (ti, Tj)
or the linear interpolation of the nearest existing tenors as in Definition 2.2.

It is possible to plot a time-series of futures curves as a 3-dimensional graph as shown in Fig. 2.3a.
Following Definition 2.3 the Maturities axis refers to the tenors Tj , and the Time axis refers to times
ti. In Fig. 2.3b the same 3d plot is shown but represented in 2d. The short end is the time-series
with maturity T1 = 0. The long end is the time-series with maturity T56 = 56 · 30 = 1680 days,
approximately 4.5 years. The futures time-series behaves fairly smoothly over the tenors as seen in
Fig. 2.2, while day-to-day prices behave irregularly, as seen in Fig. 2.3b.
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(a) 3d plot of WTI NYMEX Futures time-series.
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(b) 2d plot of WTI NYMEX Futures time-series.

Figure 2.3: Time series of WTI NYMEX (North American oil benchmark) futures curves
from 01/08/14 to 01/06/18.

2.3 Exploring the Data

An exploration of the datasets is made, outline which datasets will be used for training and which for
testing. Furthermore, an explanation of some of the limitations imposed by the data is made.

The data available are futures time-series for the oil commodities given in Table 2.1. Refer to
each futures time-series of a commodity as a dataset. The available data runs from 2014-08-01 to
2018-06-01, that is 988 days of data - the markets are open on working days only. Each futures curve
consists of 56 tenors; therefore, a dataset can be represented as a matrix of size 988× 56, sometimes
this is notated as (988, 56). In Table 2.3 a list of the products with minimum and maximum prices in
U.S. dollars ($) per barrel is shown. The range of each dataset varies considerably. The data for F35
ROT FB, GO01 ROT FB, HSFO380 SGP FC, JK ROT FB falls in the range [100$, 1000$] while the
data for Brent ICE, Brent Dated, and WTI NYMEX falls in the range [20$, 110$].

Product Minimum Price ($) Maximum Price ($)

Brent ICE 27.76 107.02
Brent Dated 27.21 79.89
WTI NYMEX 26.53 98.36
F35 ROT FB 98.94 569.27
GO01 ROT FB 237.87 896.92
HSFO380 SGP FC 122.83 591.67
JK ROT FB 263.14 970.37

Table 2.3: Minimum and maximum prices of the commodities from the available data in the period
2014-08-01 to 2018-06-01.

At the beginning of the project, the choice was made to choose one product as the test set, one product
as the validation set, and the others as the training sets. WTI NYMEX was assigned as the test set,
Brent ICE was assigned as the validation set, and the other 5 sets as training sets. The choice of this
split was mainly due to WTI NYMEX being one of the largest benchmark crude oils, and thus a good
choice to have as the test set.

It is not possible to treat all the training datasets as a single dataset by joining the time-series’ at the
beginning and ends. This will create price jumps where the datasets are joined. Furthermore, by
joining the training sets into a single large time-series is that the price range of the set is approximately
[20$, 1000$]. This is larger than the price range of any individual dataset. Scaling of the data is
carried out as outlined in Section 6, so that the data can be used by a neural network. This will scale
the data to a smaller range such as to the interval [0, 1] in the case of normalisation. In doing so,
some datasets will be scaled to the range [0, 0.1], while others to the range [0.1, 1]. The discrepancy
between the intervals [20$, 110$] and [100$, 1000$] is hereby maintained. This is a problem when
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training neural networks because it is needed that each futures curve is approximately in the same
range. This method is therefore discarded and another approach is taken.

Each training set is seen separately, and scaling is carried out per dataset. That means that when
scaling is applied, each dataset is scaled to fit in the interval [0, 1] or similar with other scaling
techniques. The problem with this approach is that prices between datasets are in this method no
longer preserved and futures curves from different training sets may be scaled to the same scaled
curve. Testing this method produced much better results than the first, so although this method also
has its disadvantages, it does allow for the successful training of neural networks. This is the method
that is used throughout this paper.

As later discussed in Section 12 other training/validation/test distributions (see Section 4.1) could
have been considered. The first 3/4 of each dataset could have been treated as training data, the
next 1/8 as validation data and the last 1/8 as test data. This would have been useful to learn
interrelationships between the different products. This method was not chosen initially because it
would have resulted in less training data when training autoencoders to learn to compress futures
curves (see Section 7).

2.4 Covariance of Oil Futures

The covariance of the log-returns over the tenors is often calculated for historical oil futures time-
series data. The covariance of the historical data is compared against the covariance of the simulated
data provided by the models. The definition of covariance is as follows.

Definition 2.4 (Covariance). For random variables X,Y over R,

cov(X,Y ) = E [(X −E [X])(Y −E [Y ])] .

For n realisations x = (x1, ..., xn) and y = (y1, ..., yn) of X and Y , the sample covariance is given
by

cov(x,y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ),

where x̄ = 1
n

∑n
i=1 xi.

Consider a random vector X = (X1, ...,Xm) in Rm. The covariance is defined as

Cov(X) =


cov(X1,X1) . . . cov(X1,Xm)
cov(X2,X1) . . . cov(X2,Xm)

...
...

cov(Xm,X1) . . . cov(Xm,Xm)

 .

Let x ∈ Rm×n matrix, where the n columns of x represent n realisations of the random vector Z over
Rm. Let the sample mean be given by x̄ = (x̄1, ..., x̄m)> where x̄i =

1
n

∑n
j=1 xij . The covariance

is then given by

Cov(x) =
1

n
(x− x̄1>(n))(x− x̄1>(n))

>

where 1(n) = (1, ..., 1)> a column vector of n 1’s. Note Cov(x) is a (m × m) matrix. Let
k, l ∈ {1, ...,m}. Then

Cov(x)kl =
1

n

n∑
p=1

(x− x̄1>(n))kp((x− x̄1>(n))
>)pl

=
1

n

n∑
p=1

(xkp − x̄k)(xlp − x̄l).

Let xk· = (xk1, ...,xkn) and xl· = (xl1, ...,xln). It follows that Cov(x)kl = cov(xk·,xl·).
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Definition 2.5 (Log-returns). Let x = (x1, x2, ..., xn) ∈ Rn. Consider constants c, k ∈ R. Let
x̃ = (x̃1, x̃2, ..., x̃n) = (x1 + c, x2 + c, ..., xn + c), where c is a constant such that xi + c > 0 for
all i = 1, ..., n. Define

yi−1 := k log

(
xi + c

xi−1 + c

)
= k log

(
x̃i

x̃i−1

)
for i = 2, ..., n.

Here y := (y1, ..., yn−1) are the corresponding log-returns. The constant c is chosen to avoid
division by 0. The default choice of the constant k is 1, however it can be used to adjust the range of
the yi values, which may be useful when using log-returns as input data for a neural network.

The log-returns operation can be undone as shown in Section 6.1.3.

Let X be the m× n matrix of WTI NYMEX futures time-series with n = 56 tenors and m = 988
days. Let Y be the ((m − 1) × n) matrix given by taking log-returns over the tenors of X (as
explained more clearly in Section 6.3). The covariance matrix Cov(Y >) is an (n× n) matrix and it
is given as a surface plot in Fig. 2.4.
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(a) Covariance of log-returns of WTI NYMEX.
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(b) Covariance of log-returns of BR DATED.

Figure 2.4: Covariance of log-returns for some of the datasets from Table 2.1.

In Fig. 2.4a along the diagonal a downward sloping curve can be seen, showing that the variance
decreases as the tenor increases. This agrees with that the short end of the curve is more volatile than
the long end. When making simulations of the data it is expected that the covariance of the log-returns
should be similar in shape to this. Unfortunately not all the data has similar looking covariance
log-returns. In Fig. 2.4 the covariance of log-returns from 4 datasets of Table 2.1 are examined. While
the covariance of log-returns in Fig. 2.4b is approximately decreasing similar to Fig. 2.4a, it contains
some spikes around the 2.5-year mark, showing a high variance of the log-returns at this point in time.
The reason behind this high variance is not clear and it could be due to some errors in the datasets.
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3 Classical Methods for Simulating a Time-Series of Curves

In this section, classical methods for commodity time-series simulation are examined. In Section 3.1
a measure is introduced to compare the results of different simulation methods. In Section 3.2
a stochastic model is examined, which will act as the benchmark model and is used to compare
generative neural network models (see Section 8) against a baseline. In Section 3.3 a standard method
for dimension reduction is considered and this is used to set a baseline for the autoencoder models
(see Section 7).

3.1 Symmetric Mean Absolute Percentage Error

In order to determine the quality of a particular simulation, the symmetric mean absolute percent-
age error (SMAPE) which determines the relative error on a sequence of values is introduced. In
the literature SMAPE is often used to measure the accuracy of time-series forecasting [Laptev et al.
2017; Ahmed et al. 2010]. SMAPE is less sensitive to outliers compared to root mean square error
(RMSE) [Chen et al. 2017]. SMAPE is scale-independent, so the scale is independent of the scale of
the data, while RMSE and MSE are scale-dependent. The SMAPE function is given in Definition 3.1.
Definition 3.1 (SMAPE). Consider the sequences A = (A1, ..., An) ∈ Rn and B = (B1, ..., Bn) ∈
Rn. The symmetric mean absolute percentage error (SMAPE) is given by

SMAPE(A,B) :=
1

n

n∑
t=1

|At −Bt|
(|At|+ |Bt|)/2

,

where it is assumed that for all t, |At|+|Bt| > 0. Then the SMAPE lies in the range SMAPE(A,B) ∈
(0, 2).

The SMAPE is not a metric since sub-additivity does not hold. The MSE is also not a metric for the
same reason. In the literature, they are called metrics to mean performance indicators.

3.2 Andersen Markov Model

The Andersen Markov model (AMM) is a two-factor mean-reverting model from Andersen [2008,
Section 7.1]. The performance to that of the generative adversarial neural networks is compared
in Section 8. The model is calibrated by choosing the parameters such that the model covariance
log-returns matches that of historical data. The AMM model is referred to as the benchmark model.

Let W1,W2 be independent Brownian motions under the risk-neutral measure Q. The forward prices
are determined by the following SDE

dF̂ (t, T )

F̂ (t, T )
= µ(t, T )dt+ σ1(t, T )dW1(t) + σ2(t, T )dW2(t), (1)

where
σ1(t, T ) = ea(T )η1e

−κ(T−t) + η∞ea(T ), σ2(t, T ) = ea(T )η2e
−κ(T−t).

with parameters κ ≥ 0 the mean reversion speed, volatility parameters η1 and η2, long term volatility
parameter η∞, and deterministic seasonality adjustment a(T ). The σ2 affects the short-end of the
futures curve while σ1 also has the extra term η∞ea(T ) without a decay term that persists for long
futures maturities. The µ(t, T ) is the deterministic time-dependent drift term. In the notation of
the forward price F̂ (t, T ), both the t and T are dates referring to the futures contract at time t with
maturity date T .

The two-factors in the model allows for modelling of both contango and backwardation, and the up
and down movement of the curves as a whole. The model is calibrated by fitting the covariance of
the log-returns of time-series futures data. With a two-factor model it is not possible to fit more than
the first two moments. A constraint hereby is that the curves must be strictly increasing or strictly
decreasing, which is not always the case in the data. The attractiveness of the Andersen Markov
model is that it can reasonably model simple curves without too much complexity.

Furthermore, the AMM has support for seasonality, which can be useful to simulate commodities
such as natural gases that have a seasonality component. The analysis on historical data of crude oils

15



by Wiemer [2015], shows that there is no seasonality component in this data, therefore the seasonality
component a(T ) is set to zero. There is also an extension of the AMM with support for stochastic
volatility which adds to its popularity in the industry. These features are mentioned because they add
to the attractiveness of the model in the banking world, however in this paper the focus is put on the
base model.

The parameters κ, η1, η2, η∞ of the model are calibrated by minimising the distance between the
covariance of the log-returns of historical data to the covariance of the log-returns given by the model.
Once the model is calibrated, discrete simulation of the time-series of futures curves is carried out,
given the futures curve at t = 0. The technical details for the calibration of the model and further
explanation can be found in Appendix B.

In Fig. 3.1 simulations of the model are carried out. The AMM is calibrated on the first 42 curves of
the test set, to simulate the next 42 curves. Calibrating on a larger number of days does not seem to
affect the results. In Fig. 3.1a the true data is shown. Comparing Figs. 3.1b and 3.1d to Fig. 3.1a it
appears that the simulated time-series are more volatile. The individual curves simulated are also
perfectly smooth, whereas in the real data they are not so. Repeating the simulation 100 times, a
SMAPE mean of 0.26 and a standard deviation of 0.15 is found. This is shown explicitly in Table 3.1
and this is compared to the final results of the deep learning methods in Table 8.2.
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Term to maturity (years)

0
1

2
3

4
Time

04-10-2014
14-10-2014

24-10-2014
03-11-2014

13-11-2014
23-11-2014

P
ric

e
($

)

100

200

300

400

500

600

700

800

900

(c) Simulated 2. SMAPE: 0.79.
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(d) Simulated 3. SMAPE: 0.14.

Figure 3.1: Comparison of the real data compared to 3 simulations using the Andersen
Markov Model.

Method calibrated on SMAPE, mean SMAPE, std

AMM 42 days 0.26 0.15
AMM 840 days 0.27 0.15

Table 3.1: Result of the AMM model from 100 simulations.
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3.3 Principal Component Analysis

Principal component analysis (PCA) is a tool for data analysis that reveals the internal structure of
the data by transforming the data into sets of linearly uncorrelated values called principal compo-
nents. Applications of PCA are dimension reduction, data compression, feature extraction, and data
visualisation. PCA is primarily used for dimension reduction in Section 7 and its performance is
compared to non-linear autoencoders (Section 5.1).
Definition 3.2 (Principal Component Analysis). PCA is the Orthogonal projection of the data onto a
lower-dimensional linear space, such that the variance of the projected data is maximised [Hotelling
1933]. Equivalently, it is the linear projection that minimises the average projection cost (the mean
squared distance between the data points and their projections) [Pearson 1901].

PCA can be used for dimension reduction, by omitting the axes with the smallest variances, and
thereby only losing a small amount of information. PCA can also be used in predictive models, such
as principal component regression (PCR). PCR is based on a standard linear regression model, but
uses PCA for estimating the regression coefficients. PCR is not looked into further in this paper.

The procedure outlined in Filipovic [2009] is followed. Consider a random vector X ∈ Rn. Let
µ = E[X] (with dimension n) and Q = cov(X) (with dimension n × n). Since Q is symmetric
and positive-definite, Q = ALA> where A>A = I and L = diag(λ1, . . . , λn) for λ1 ≥ · · · ≥ λn

and a1, ..., an normalised eigenvectors such that Qai = λiai. Here a1, ..., an are the columns of A.
Define Y := A>(X − µ), then Yi = a>i (X − µ) for 1 ≤ i ≤ n are the rows of Y . Call Yi the ith

principal component, and ai the ith vector of loadings, of X . It follows that X = µ + AY . Note
that E[Y ] = 0 and Cov(Y ) = L, so principal components of X are uncorrelated and Var(Yi) = λi.
Observe that

n∑
i=1

Var(Xi) = trace(Q) =

n∑
i=1

λi =

n∑
i=1

Var(Yi).

Hence
∑k

i=1 λi/
∑n

i=1 λi represents the variability in X from the first k principal components
Y1, ..., Yk. Approximate X with X ≈ µ+AkYk, where

Ak :=

a1 . . . ak

 and Yk =

 Y1

...
Yk

 .

Using WTI NYMEX data, the variability
∑k

i=1 λi/
∑n

i=1 λi for k = 1, 2, 3 is 0.9346, 0.9991, 0.9998
respectively. By taking only the first three components, the dimension of the data can be reduced
while still retaining most of the important information.

Let X ∈ Rn×m1 be the training data with m1 samples, and let X̂ ∈ Rn×m2 be the test data with m2

samples. The samples are represented as columns in the matrix. Let k ∈ N with k < n. Compute Ak

and Yk as above using X . Fix Ak. The dimension of the test data X̂ is reduced by Ŷ := A>
k (X̂ − µ̂)

where µ̂ = E[X̂]. Now Ŷ has dimension k ×m2. Each sample has dimension reduction applied
from n to k tenors. It follows that X can be reconstructed by the approximation X̂ ≈ µ̂+AkŶ . For
the reconstruction, µ̂ can be approximated with µ, giving the approximation X̂ ≈ µ+AkŶ .

Figure 3.2: Applying PCA to WTI NYMEX, with standardisation over the tenors (see
Section 7.2), the PCA loadings a1, a2, a3 are obtained.
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Figure 3.3: A selection of futures curves from WTI NYMEX, reconstructed using PCA
with pre-processing method standardisation over the tenors (see Section 7.2).

In Section 7 the performance of PCA to various autoencoder models is compared. An example of
encoding futures curves with PCA is shown in Fig. 3.3 with the associated loadings shown in Fig. 3.2.
Autoencoders are non-linear and should in theory perform better than PCA, however from later results
it clearly follows that this is not always the case.
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4 Introduction to Neural Networks

Neural networks are a branch of machine learning. Machine learning is the ability for machines
to gain their own knowledge by extracting patterns from raw data. The performance of machine
learning algorithms depends on the representation of the data given and almost always the data has to
be processed before being used successfully.

Machine learning still has its limitations. The data-generating distribution is the probability
distribution that the data is assumed to be sampled from. The no free lunch theorem [Wolpert
et al. 1997] states that an algorithm that performs well on a certain data-generating distribution
necessarily performs badly on another distribution. Averaged over all possible data-generating
distributions, every algorithm performs equally well when classifying unobserved points. Restricted
to a family distributions, it is possible to design algorithms that perform well on these distributions.
The hypothesis space is the set of functions that are possible for an algorithm to learn, and an
algorithm is affected by how large this space is made.

A dataset can be represented as a large matrix, where each row is called a sample or an example
and is a single observation. Each sample has a number of properties and these are given by the
columns. These properties are often called features. Given a dataset containing a number of
features, unsupervised learning algorithms learn useful properties of the structure of the dataset.
For example, to learn the probability distribution that generated a dataset, or to divide the dataset into
clusters. Given a dataset containing a number of features, supervised learning algorithms learn to
associate each example with a label. The algorithm learns to predict the label based on the features.

4.1 Training, Validation and Test Sets

In supervised learning, each sample can be represented as a pair (x,y) where x and y are both a set of
features. Given x the neural network should learn to output y. Given a list of pairs (x,y), the data is
split into training, validation and test sets. The training set are examples that the algorithm is trained
on and used to fit the model. The validation set are examples that the training algorithm does not
observe. It is used to estimate the generalisation error during or after training. The generalisation
error is the error of the algorithm on previously unseen data. After seeing the generalisation error,
the hyper-parameters of the model, for instance the number of layers or the number of nodes per
layer, are tuned. The test set are examples used to estimate the generalisation error after learning has
completed. No examples from this set should be present in the training or validation set. The test
set is used to validate the actual real generalisation power of the algorithm. The test set should be
used once all the data analysis has been done. The model underfits when it is obtains a large error
on the training set and on the validation set. The model overfits when the gap between the error on
the training set and the error on the validation set is large.

Some assumptions about the data are made. It is assumed that there is a data-generating process
that is the true, underlying phenomenon that is creating the data. The data-generating distribution is
called ptrue. It is assumed that examples from the data are independent and identically distributed.
The distribution of the available data is called pd.

4.2 Feedforward Networks

Supervised neural networks can be summarised as, given pairs (x,y), they find a function f such that
f(x) approximates y. In a feedforward neural network, also known as a multilayer perceptron
(MLP), information flows in one direction, the value x is passed through the network to output a
value ŷ, the approximation for y. There are no loops in the network.

Feedforward networks can be considered as a chain of functions f (1), f (2)..., f (l) with parameters
θ(1),θ(2), ...,θ(l), in the form

f(x) = f (l)(f (l−1)(...f (1)(x,θ(1)), ...),θ(l−1)),θ(l)) = ŷ.

In training the parameters θ are updated such that ŷ is as close as possible to y by considering a loss
function L(y, ŷ).
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4.3 Forward Propagation

The input layer is referred to as the 0 layer. The layers between the input and output layers are called
hidden layers. The parameters θ(k) can be written as θ(k) = (W(k),b(k)) where W(k) refer to
the weights between layer k − 1 and layer k, and where b(k) refers to the biases of layer k. The
dimension of W(k) is (d(k−1) × d(k)) and the dimension of b(k) is d(k). The possibly non-linear
functions g(k) retain the dimension of the input. Thus the output of each layer has dimension d(k).
The input layer is h(0) = x of length d(0). The output of the first layer is given by

h(1) = g(1)(a(1)) where a(1) = W(1)x+ b(1).

The second layer is given by

h(2) = g(2)(a(2)) where a(2) = W(2)h(1) + b(2)

repeating until h(l) is found. This process is called forward propagation and is shown in the form
of a diagram in Fig. 4.1 and in Algorithm 1. When a W(k) contains only, or mostly non-zero entries,
the layer is called dense. If all the layers are dense then the entire network is called dense.

The output of the last layer ŷ := h(l) is used to compute a loss function L(ŷ,y) representing the
similarity between the output of the network ŷ and the true value y.

h(0) h(1) h(l−1) h(l)

Figure 4.1: Forward Propagation: Let h(0) = x and h(k) = g(k)(a(k)) where a(k) =

b(k) +W(k)h(k−1) for k = 1, ..., l.

Algorithm 1 Forward Propagation

1: h(0) = x
2: for all k in 1, 2, ..., l do:
3: a(k) = b(k) +W(k)h(k−1)

4: h(k) = g(k)(a(k))

5: ŷ = h(l)

6: J = L(ŷ,y)

In a feedforward network, the input x is passed into the network, and moves through the network
to obtain output ŷ. During training forward propagation is used to produce cost J in Line 6 of
Algorithm 1. The cost J is often written as J(θ) where θ represents the parameters of the model.
In practical applications, forward propagation is not applied individually to examples (x,y), but
in batches, where the loss is computed over a batch of examples. This has the advantage of faster
computation times.

4.4 Back-Propagation

The back-propagation algorithm computes the gradients of the loss function with respect to the
parameters of the network. Let the function f be as in Section 4.2 and let J := L(f(x,θ),y) be the
loss function. Then back-propagation computes ∇W(k)J and ∇b(k)J for k = l, l − 1, ..., 1. This
can be done iteratively using the chain rule as shown in Algorithm 2, computing backwards from
the last layer. The gradients are required in order optimise the weights to reduce the loss in forward
propagation.

In Algorithm 2, the same subexpressions may be recomputed several times depending on the neural
network. The algorithm could have exponential runtime due to these repetitions. In practice, a more
generalised form of back-propagation is used and for further details refer to Goodfellow et al. [2016,
Section 6.5.6]. Intermediate results can be saved avoiding recomputation.

20



Algorithm 2 Back-Propagation

1: u← ∇ŷJ = ∇ŷL(ŷ,y)
2: for all k in l, l − 1, ..., 1 do:
3: ∇b(k)J = ug(k)

′
(a(k))

4: ∇W(k)J = ug(k)
′
(a(k))h(k−1)

5: u← ∇h(k−1)J = W(k)ug(k)
′
(a(k))

4.5 Parameter Optimisation

Let pd be the empirical distribution given by the training set. Let ptrue be the data-generating
distribution, which is unknown, unlike pd. Let the function f be as in Section 4.2. The empirical loss
is given by the average loss over the training set

J(θ) = Ex,y∼pd
L(f(x,θ),y) =

1

m

m∑
k=1

L(f(x(k),θ),y(k)).

The empirical loss is minimised in the hope that this decreases the loss over ptrue. This has the
possibility for overfitting, since if the model has a high enough capacity it can memorise the training
set.

In convex optimisation problems, any local minimum is a global minimum. Unfortunately the
objective functions in neural networks are non-convex due to the non-linear activation functions (see
Section 4.6). In Goodfellow et al. [2014b] it is argued that local minima are not a big problem for
training neural networks. In sufficiently large neural networks, most local minima have a small cost
and finding the global minimum is unimportant [Goodfellow et al. 2016, Section 8.2.2]. In high
dimensional spaces, local minima are rare and saddle points are more common. Stochastic gradient
descent has shown to be successful on many different neural network tasks.
Definition 4.1 (Gradient descent). Let f : Rn → R be a C1 smooth function. Gradient descent is
the method of decreasing f by moving in the direction of the negative gradient. Gradient descent
gives the new point

x′ = x− ε∇xf(x)

where ε ∈ R>0 is the learning rate, determining the size of each step.

For stochastic gradient descent, gradient descent is applied to a minibatch of examples from the
training set on each iteration. A minibatch is a subset of the data. The minibatch is chosen randomly.
The weights are updated in the negative direction of the gradient. See Algorithm 3.

Algorithm 3 Stochastic gradient descent (SGD)

1: while stopping condition not met do
2: Sample minibatch {(x(1),y(1)), ..., (x(m),y(m))} from pd.
3: û← −ε 1k∇θ

∑
k L(f(x

(k),θ),y(k)).
4: θ ← θ + û.

Stochastic gradient descent is sensitive to the initial weight values and for feedforward neural networks
the weights are initialised to small random values. To improve the SGD algorithm the learning rate is
not kept fixed and momentum is introduced. In practice, the learning rate is decreased linearly during
learning until some fixed iteration where after ε is kept constant. With momentum, the previous
gradient is not completely discarded. Line 3 in Algorithm 3 is adjusted with

û← ûα− ε
1

k
∇θ

∑
k

L(f(x(k),θ),y(k))

where α controls the momentum.

4.6 Activation Functions

Activation functions (or units) are the non-linear component of each layer. The non-linearity allows
the neural network to learn a large family of functions. Consider a two layer neural network, h(0) = x
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and h(1) = g(a) where a = Wx + b. Then g is called the activation function. Some activation
functions are differentiable almost everywhere and the probability of evaluating the function exactly
in a non-differentiable point is very small. In practice, the one-sided derivative is taken instead at
these points.

Name Function Derivative Image

Identity g(x) = x g′(x) = 1 (−∞,∞)

Sigmoid g(x) = σ(x) = 1
1+e−x g′(x) = g(x)(1− g(x)) (0, 1)

TanH g(x) = tanh(x) g′(x) = 1− g(x)2 (−1, 1)
ReLU g(x) = max(0, x) g′(x) = 1x≥0 [0,∞)

Leaky ReLU g(x) = max(0, x) + αmin(0, x) g′(x) = 1x≥0 + α1x<0 [0,∞)

Softmax gi(x) =
exi∑J

j=1 exj

∂gi(x)
∂xj

= gi(x)(δij − gj(x)) (0, 1)

Table 4.1: A list of common activation functions.

Layers with certain activation functions can lead to the gradients of the loss function to approach zero,
making the network hard to train. This is called the vanishing gradient problem. The derivative
of the sigmoid function is close to 0 for large or small values. With many layers using the sigmoid
function, this effect is compounded and leads to the weights of the initial layers not being updated
effectively during training. It can be partially avoided by using activation functions that are more
robust against the vanishing gradient problem such as (leaky) ReLU.

ReLU stands for rectified linear unit; they are equivalent to linear functions for half their domain,
hence the derivatives remain large when the unit is active. Upon initialisation of the weights, small
random positive values will ensure that the unit is active.

Leaky ReLU is a generalisation of ReLU where α is usually chosen to be quite small with α = 0.01
a commonly chosen value. With ReLU the gradient is 0 for negative values and can no longer learn
when the gradient becomes 0. The leaky ReLU avoids this and guarantees that they receive positive
gradient everywhere. In Parametric ReLU, α is a parameter of the activation function that can be
learnt.

The tanh and sigmoid functions are related by tanh(x) = 2σ(2x)− 1. Sigmoid functions saturate to
close to 1 when the input is large, and saturate to close to 0 when the input is small. This saturation
means that the derivative is close to 0 making it difficult to continue learning. The sigmoid function
is often used only in the last layer with an appropriate cost function that can undo the saturation.

4.7 Cost Functions

Similar to activation functions, the cost function should have a large gradient and not saturate easily
in order to help gradient-based learning.

Usually, neural networks are trained using the maximum likelihood. The cost function is given by

J(θ) = −Ex,ypd
log pmodel(y|x).

If pmodel(y|x) = N (y; f(x;θ), I), where the function f represents a neural network with parameters
θ, then ignoring terms that do not depend on the model parameters,

J(θ) =
1

2
Ex,y∼pd

||y − f(x;θ)||2,

where Ex,y∼pd
||y − f(x;θ)||2 is known as the mean squared error (MSE).

In the case of a binary classification problem, where y ∈ {0, 1}, take the sigmoid function as the
activation function of the last layer. In the multi-class classification problem, if the labels are mutually
exclusive softmax should be used, and if not sigmoid can be used for each output. There are many
activation functions that map the input to the range (0, 1), however the reasoning behind the sigmoid
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function is that it arises naturally in the posterior probability distribution in binary classification
[Bishop 2009, Section 4.2].

If it is assumed that pmodel(y|x;θ) is Bernoulli, in the case of a binary classification problem, the
sigmoid function arises as a consequence of generalised linear models (GLMs) [Ng 2018, Section
9.2]. Let pmodel(y|x;θ) = Bernoulli(y; ŷ(x;θ)) then

log p(y(i)|x(i);θ) = log
(
(ŷ(i))y

(i)

(1− ŷ(i))(1−y(i))
)

= y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i)).

From Theorem A.2 maximising the likelihood is equivalent to minimising the cross-entropy. Hence
the loss function is chosen as

J(θ) = − 1

m

m∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where the function is minimised using a method such as SGD. This loss function is called binary
cross-entropy loss. The sigmoid as activation function in the last layer is usually coupled with binary
cross-entropy loss since the logarithm in the binary cross-entropy loss undoes some of the effects of
the exponential in the sigmoid and counteracting the saturating property.
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5 Investigation into Specialised Neural Networks

In this section neural network structures are investigated such as to give an overview of the current
state of neural network development. Some neural networks will be very useful for solving the
problems later on in Sections 7 and 8. Other neural networks seem like they could be useful, but
perform poorly when trained on time-series futures data, for example in Section 9.

5.1 Autoencoders

Autoencoders are a type of unsupervised feed-forward neural network that learn how to encode data.
In a supervised case the data is represented in pairs (x,y); the same is done now except on pairs
(x,x), that is to say, an autoencoder finds a function f such that f(x) approximates x. They are used
to learn a representation of the dataset for dimension reduction. Recently, autoencoders have been
extended to learn generative models of the data.

5.1.1 Standard Autoencoder

Autoencoders are based on two parts, an encoder and a decoder. The encoder reduces the dimension
of the data and the dimension of the output of the encoder will be referred to as the latent dimension
and the space is called the latent space. The encoder learns a representation of the data in a smaller
dimension. The latent dimension should be less than the dimension of the data, otherwise the
autoencoder will not need to carry out any dimension reduction and will not be particularly useful.
The decoder reconstructs the original data from the latent representation as best as possible. The
encoder and decoder can be seen as functions g(f(x)) = x̂ where f represents the encoder, and g
represents the decoder. More precisely, write f(·) as f(·;θ1) and similarly g(·) as g(·;θ2) where θi

are the parameters of the model. In learning, the loss function L(x, g(f(x;θ1);θ2)) is minimised
over θ1 and θ2. In the case that the encoder and decoder are linear, the model is similar to PCA in
some respects, both are used for dimension reduction and are linear. They differ in that PCA takes the
components that have maximal variance, while a linear autoencoder is trained via SGD or a similar
algorithm to reduce the loss.

In diagram form, a standard autoencoder with one layer acting as an encoder, and one layer acting as
the decoder, is shown in Fig. 5.1a. More layers can be added to both the encoder and the decoder,
giving a representation shown in Fig. 5.1b. Usually, a funnel style of stacked layers is chosen, working
from the input to the encoded value and the reverse in the decoder to give the output, such as in
Fig. 5.1b.

x̂x

relu sigmoid

encoder decoder
(a) Standard Autoencoder with 2 dense layers

x

relu

x̂

sigmoidrelu relu relu relu

encoder decoder
(b) Standard Autoencoder with 6 dense layers

Figure 5.1: Standard autoencoders with 2 and 6 dense layers respectively. The number of
nodes of each layer is illustrated by the height of the rectangle in the diagram.

5.1.2 Variational Autoencoder

One of the drawbacks of the standard autoencoder is that there is no structure in the latent space and
the encoded points may be sparsely mapped over the space. The standard autoencoder is very capable
of replicating the input but from the sparseness it is not possible to randomly sample from the latent
space [Shafkat 2018]. The variational autoencoder [Kingma et al. 2013] gives some structure to the
latent space. It forces similar points from the data to be grouped closely in the latent space, and it
forces the points to be multivariate normally distributed. In this way, a sense of continuousness is
achieved. Points in the latent space that are close together produce similar points in the space the
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data lives in. This allows the variational autoencoder to learn encodings of the data that it has not
seen before but are variations of encodings that it has seen. Since the points are multivariate normally
distributed, it is possible to sample from the latent space.

Consider a dataset X = {x(n)}n=1,...,N of i.i.d. samples of an unknown distribution where x(n) ∈
RD. Assume that x(n) ∼ pθ∗(x|z) where z(n) ∼ pθ∗(z), however these distributions and the
parameters θ∗ are unknown. The z plays the role of noise. These distributions are estimated by
parametric distributions pθ(x|z) and pθ(z) depending on parameter θ. Let the prior distribution
be standard multivariate normal pθ(z) = N (z|0, I). Let the likelihood be multivariate normal
pθ(x|z) = N (z|µ,σ2I) where µ and σ2 are dependent on z. The marginal likelihood pθ(x) =∫
pθ(z)pθ(x|z) dz and the posterior pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) are often intractable because

pθ(x|z) may be dependent on θ in a complex way. Let qφ(z|x) = N (z;µ,σ2I), where µ and
σ2I are dependent on x, be an approximation of pθ(z|x), and assume thereby that pθ(z|x) is
approximately normal. The distribution qφ(z|x) acts as a probabilistic encoder and pθ(x|z) acts as a
probabilistic decoder. The data is represented by x with distribution pθ(x) and the encoded data is
represented by z with distribution pθ(z).

A good approximation for qφ(z|x) of pθ(z|x) needs to be found. The variational inference technique
(see Appendix A.5) is applied to find argminφ KL (qφ(z|x)||pθ(z|x)). The evidence lower bound
L(θ,φ,x) is defined as

L(θ,φ,x) := −KL (qφ(z|x)||pθ(z))︸ ︷︷ ︸
(1)

+Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
(2)

,

where

(1) is called the regularisation term, which is a measure of how close qφ(z|x) is to pθ(z),
(2) gives the expected negative reconstruction error.

By Appendix A.5, maximising L(θ,φ,x) over φ, that is minimising −L(θ,φ,x) over φ, is equiv-
alent to minimising KL (qφ(z|x)||pθ(z|x)) over φ. By applying the reparametrisation trick to
qφ(z|x), Lemma A.3, rewrite z ∼ qφ(z|x) as z = µ + σ � ε, where ε ∼ p(ε) = N(0, I).
Computing the Kullback-Leibler from Lemma A.1 gives

L(θ,φ,x) = −KL (qφ(z|x)||pθ(z)) +Eqφ(z|x) [log pθ(x|z)]
= −KL (qφ(z|x)||pθ(z)) +Ep(ε) [log pθ(x|gφ(ε,x))]

=
1

2

n∑
j=1

(
1 + log

(
σ2
j

)
− µ2

j − σ2
j

)
+Ep(ε) [log pθ(x|gφ(ε,x))] .

This is used to define the variational autoencoder. The encoder is given by qφ(z|x) with parameters
φ and the decoder is given by pθ(x|z) with parameters θ. Let the loss function be −L(θ,φ,x). The
probabilistic encoder qφ(z|x) can be written in terms of neural networks NNµ

enc(x) and NNlogσ2

enc (x)
representing networks that map from x 7→ µ and x 7→ logσ2 respectively. These functions are
feedforward networks like the function f in Section 4.2. The ‘enc’ refers to them being part of
the encoder, and the ‘µ’ and ‘logσ2’ respectively refer to what the output of the network should
represent. Let

qφ(z|x) = N (z|NNµ
enc(x), exp(NNlogσ2

enc (x)/2)I).

Then z can be written as
z = NNµ

enc(x) + exp(NNlogσ2

enc (x)/2) · ε, with ε ∼ N(0, I).
The likelihood pθ(x|z) is assumed to be multivariate normal, and it is represented as

pθ(x|z) = N (x|NNµ
dec(z), I)

where NNµ
dec : z 7→ µ represents the decoder neural network. For a particular xi and zi it follows

that

− log(p(x(i)|z(i))) = − log

(
1√

(2π)n|I|
exp

(
−1

2
(x(i) − NNµ

dec(z
(i)))>I(x(i) − NNµ

dec(z
(i)))

))

=
1

2
||x(i) − NNµ

dec(z
(i))||2 + constant. (2)
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µ

logσ2

z

ε

h hx x̂

Figure 5.2: Variational Autoencoder diagram. Here x is the input and x̂ is the output.
The h represents a dense layer. The µ and logσ2 refer to dense layers where the output
of the layer should be interpreted as µ and logσ2 respectively. The ε is a multivariate
standard normal random variable and it is shown in a circle instead of a rectangle to show
that this is a source of stochasticity. The arrows show the direction of forward propagation
through the network.

The setup is shown in Fig. 5.2. The encoder is NNµ
enc(x) and the decoder is NNµ

dec(z).

In carrying out back-propagation it is needed to compute the gradients ∇θ (−L(θ,φ,x)) and
∇φ (−L(θ,φ,x)) in each step. Calculating the gradient∇θ (−L(θ,φ,x)) is the same as usual. The
reason for applying the reparametrisation trick is such that the gradient ∇φ (−L(θ,φ,x)) can be
calculated because it allows back-propagation through µ and logσ2. The encoder and decoder can
both be given by a number of ReLU layers. Instead of σ2, logσ2 is used because it is more stable for
the neural network. It is needed that σ2 is always positive, however the output of a neural network
can be negative or positive. By using the log, σ2 is guaranteed to be positive. Usually σ2 is quite
small, 0 < σ2 � 1, so applying the log gives a larger range to the numbers close to 0. The neural
network does not have problems with large negative numbers and calculating the exponential of the
logarithm is numerically stable.

The method is carried out numerically as follows. Let x(i) be the ith sample from X. Let
−L̃(θ,φ,x(i)) be an empirical estimate of −L(θ,φ,x(i)).

−L̃(θ,φ,x(i)) = −1

2

n∑
j=1

(
1 + log

(
(σ

(i)
j )2

)
− (µ

(i)
j )2 − (σ

(i)
j )2

)
− 1

L

L∑
l=1

log pθ(x
(i)|z(i,l))

where in the last line z(i,l) = µ(i) + σ(i) � ε(l) for ε(l) ∼ p(ε), and take L large enough. The last
term can be replaced with the MSE by Eq. (2).

Over a minibatch XM = {x(i)}i=1,...,M of X, consider

L̃M (θ,φ,XM ) =
1

M

M∑
i=1

L̃(θ,φ,x(i)).

Now the gradient ∇θ,φ

(
−L̃M (θ,φ,XM )

)
can be computed and stochastic gradient descent can be

applied.

5.1.3 Adversarial Autoencoders

The adversarial autoencoder [Makhzani et al. 2015] uses a combination of an autoencoder and a GAN
(Section 5.2). The GAN is used in the regularisation phase for the latent space.

Let pd(x) be the data distribution. Let x ∼ pd(x) be the input and z the latent code. Let p(z) be the
prior distribution of the model, qφ(z|x) the posterior distribution acting as the probabilistic encoder,
and pθ(x|z) the likelihood acting as the probabilistic decoder. The encoder qφ(z|x) defines the
posterior distribution q(z), which is the distribution on the latent space, given by

q(z) =

∫
x

qφ(z|x)pd(x) dx

The autoencoder consists of an encoder qφ(z|x) and a decoder pθ(x|z). The encoder may function
like in the standard autoencoder where qφ(z|x) is deterministic with the only stochasticity in q(z)
is from pd(x). Alternatively the encoder can be a Gaussian posterior qφ(z|x) = N (µ,σ2I) where
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µ and σ2 depend on x like in the variational autoencoder model, where the reparametrisation trick
is applied to allow for back-propagation. The prior p(z) may be any distribution in the case of the
deterministic posterior, while when using the Gaussian posterior it is set to p(z) = N(z; 0, I).

The GAN acts as a regulariser on top of the autoencoder and guides the distribution q(z) to be close
to p(z). Samples z ∼ q(z) are labelled as fake and samples z ∼ p(z) are labelled as real. The model
works as follows, and is shown in Fig. 5.3.

1. Train the autoencoder: Real data x ∼ p(x) is passed through the encoder qφ(z|x) and
decoder pθ(x|z) and then the encoder and decoder are updated based on the reconstruction
loss.

2. Train the discriminator: Input z ∼ q(z) is labelled as fake and z ∼ p(z) is labelled as
real. The discriminator is trained to learn this categorisation.

3. Train the generator: Real data x ∼ p(x) is fed into the encoder qφ(z|x), and the output
z ∼ qφ(z|x) is fed into the discriminator. The encoder (or generator) is trained to fool the
discriminator into believing z is distributed according to p(z).

Refer to Section 5.2.1 for the precise training of the discriminator and generator forming the generative
adversarial part of the model.

real data
x

encoder
(generator)
qφ(z|x)

z ∼ q(z)
decoder
pθ(x|z)

sample
z ∼ p(z) discriminator loss

probability
real/fake

x̂

+

−

Figure 5.3: Adversarial Autoencoder diagram. The x is the input and the x̂ is the output.
For the autoencoder, only the top row is used. For the discriminator, the − represents z
that are labelled as fake and the + represents the z that are labelled as real.

The adversarial autoencoder and the variational autoencoder are both generative autoencoder models,
however there are some clear differences. For the variational autoencoder, the Kullback-Leibler
divergence is used to guide qφ(z|x) to be similar to the prior distribution pθ(z). For the adversarial
autoencoder the aggregated posterior distribution q(z) is guided to be similar to the prior p(z) using
adversarial training. Advantages of the adversarial autoencoder is that it only needs to be able
to sample from the prior distribution p(z) while the variational autoencoder needs the exact form.
This allows for complex choices for the prior distribution. Experiments for a comparison of the
Adversarial Autoencoder against the Variational Autoencoder on labelled data (MNIST) has been
done in Makhzani et al. [2015, Section 2.1]. The clustering in the Adversarial case is denser than in
the Variational case for supervised learning.

5.2 Generative Adversarial Networks

Generative models are models which learn an approximation pθ(x) to the probability distribution
pd(x) over the input space. In the following sections the standard generative adversarial (GAN)
model is introduced (see Section 5.2.1). An extension of this is the conditional GAN, described in
Section 5.2.2. A more robust version of the GAN is the Wasserstein GAN, explained in Section 5.2.3.
An improved version of it is examined in Section 5.2.4. A discussion about using GAN methods for
anomaly detection can be found in Section 5.2.5.

5.2.1 Standard GAN

Generative adversarial networks consist of two networks, a generator and a discriminator, and they
are played against each other in a game theory type scenario [Goodfellow et al. 2014a]. Let pd(x) be
the probability distribution over the data, defined on space X . Let p(z) be a prior noise distribution
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defined on space Z , usually p(z) is chosen to be Gaussian. Define the generator as a neural network
G : Z × Rd → X , written as Gθ(z) where z ∈ Z and θ ∈ Rd are the parameters of the network.
For random variable z ∼ p(z), let x = Gθ(z) and call pθ(x) distribution of x. Let the discriminator
be given by the neural network D : X × Rd → (0, 1), written as Dθ(x). The discriminator gives a
value corresponding to the likeliness that the x was sampled from pd(x) instead of pθ(x). The model
can be described as a two-player zero-sum game, where the discriminator receives payoff v(Gθ, Dθ)
and the generator receives payoff −v(Gθ, Dθ) with

v(Gθ, Dθ) = Ex∼pd(x) logDθ(x) +Ez∼p(z) log (1−Dθ(Gθ(z))) .

Each player tries to maximise its payoff. The optimal solution for G is
G∗ = argmin

G
max
D

v(G,D).

In the payoff function, note Dθ(x), 1−Dθ(G(z)) ∈ (0, 1) hence logDθ(x), log (1−Dθ(Gθ(z))) ∈
(−∞, 0). The first term describes how well the discriminator can assign high probability to samples
from pd(x). The second term describes how well the generator can fool the discriminator into
assigning samples x from p(x) with high probability of coming from pd(x).

noise
z ∼ p(z)

generator
Gθ(z)

real data
x ∼ pd(x)

discriminator
Dθ(x)

probability
real/fake

loss

+

−

Figure 5.4: GAN diagram. For training the discriminator, the samples x labelled as true
are represented by the + and the samples labelled as false are represented by the −. The
arrows show the direction of forward propagation through the network.

The generator network can no longer improve when the discriminator cannot differentiate be-
tween the two distributions, i.e. Dθ(x) = 1/2. In practice, instead of training Gθ to minimise
log (1−Dθ(Gθ(z))), Gθ can be trained to maximise logDθ(Gθ(z)). The discriminator and the
generator are trained separately. The training procedure is given by

1. Train discriminator on (x, 1) where x ∼ pd(x), with loss L(Dθ(x), 1).
2. Train discriminator on (x, 0) where x ∼ pθ(x), with loss L(Dθ(x), 0).
3. Train generator (to have the discriminator label samples as valid) on (z, 1) where z ∼ p(z),

with loss L(Dθ(Gθ(z)), 1).

Learning in the generative adversarial framework can have its difficulties. When maxD v(Gθ, Dθ)
is convex in Gθ, there is asymptotic consistency to the true G∗ [Goodfellow et al. 2016, Section
20.10.4]. In practice, this is not the case and it may lead to the model underfitting, or being unstable.
It can be the case that the discriminator learns much faster than the generator. If the discriminator is
very good, compared to the generator, then it becomes hard to train the generator since the generator
is unable to fool the discriminator. To remedy this it is possible to train the generator more than the
discriminator in each round. In practice, it is found that as the discriminator gets better the rate at
which the generator improves becomes smaller [Arjovsky et al. 2017a; Goodfellow et al. 2016]. In
Arjovsky et al. [2017a] the author goes into details explaining the instability of standard GANs and
shows that if the supports of pd(x) and p(x) are disjoint or if the supports lie in a low dimensional
space, then there exists a perfect discriminator, that is to say the discriminator is constant on both
spaces and therefore nothing is learnt with back-propagation. In Section 5.2.3 the Wasserstein GAN
is examined, which promises better performance and better stability compared to the standard GAN.

5.2.2 Conditional GAN

The conditional GAN is an extension of the standard GAN with the addition of conditional data
being fed as input to the generator and the real data. By conditioning the model on additional
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information it is possible to direct the data generation process. Let the generator be the feed-forward
neural network G : Z × Y × Rd → X , written as Gθ(z|y). For z ∼ p(z) and some y ∈ Y ,
call pθ(x|y) the distribution of Gθ(z|y). Let the discriminator be the feed-forward neural network
D : X ×Y ×Rd → R, written as Dθ(x|y). Fig. 5.5 shows the GAN from Fig. 5.4 with the addition
of conditional data y fed into the generator, the discriminator and the real data sampling.

noise
z ∼ p(z)

generator
Gθ(z|y)

real data
x ∼ pd(x|y)

discriminator
Dθ(x|y)

probability
real/fake

loss

+

−

conditional data
y

Figure 5.5: Conditional GAN diagram. This is an extension of the GAN diagram shown
in Fig. 5.4 where the conditional data y has been added.

Conditioned on y the payoff is now written as

v(Gθ, Dθ) = Ex∼pd(x) logDθ(x |y) +Ez∼p(z) log (1−Dθ(Gθ(z |y) |y)) .

The main application for conditional GANs in this project is for the use of time-series data.

Consider data in a time-series setting, where samples from pd(x) are windows of time-series data.
A window is an interval of time-series data of a fixed length. The next window is the directly
following interval of the same fixed length. Let y ∼ pd(x), so y is a window of time-series data. Let
x ∼ pd(x|y) be the next window of time-series data that directly follows from y. The generator is
also conditioned on y and therefore the generator should learn the next window of time-series data
given the window y of time-series data. The training procedure is given by

1. Train discriminator on (x, 1) where x ∼ pd(x|y), with loss L(Dθ(x |y), 1).
2. Train discriminator on (x, 0) where x ∼ pθ(x|y), with loss L(Dθ(x |y), 0).
3. Train generator (to have the discriminator label samples as valid) on (z, 1) where z ∼ p(z),

with loss L(Dθ(Gθ(z |y) |y), 1).

5.2.3 Wasserstein GAN

Wasserstein GANs (WGANs) [Arjovsky et al. 2017b] do not require a careful balance in the training
of the discriminator and the generator such as is needed for the standard GAN model. The loss of
the WGAN shows properties of convergence and one does not need to examine generated samples
to find whether one model is better than another. It is enough to look at the loss value since it is
proportional to the quality of the model. In practice, WGANs are more robust than standard GANs
and have proven to perform well on generator architectures where GANs have performed poorly on.

Assume the data follows the unknown distribution pd(x), where pθ(x) acts as an approximation
to pd(x). One method for this approximation is to minimise the Kullback-Leibler divergence
KL(pd||pθ); this is used in the Variational autoencoder and the standard GAN models. The disad-
vantage of this method is that the support of one distribution is not contained in the support of the
other, so the Kullback-Leibler divergence is not defined [Arjovsky et al. 2017a]. To fix this, a noise
term can be added to the model distribution. Consider the Wasserstein-1 in Definition 5.1.
Definition 5.1 (Earth-Mover distance or Wasserstein-1). Let X be a compact metric space and let Σ
the set of all Borel subsets of X . Let Prob(X ) be the space of all probability measures defined on X .
Let pd, pg ∈ Prob(X ). The Earth-Mover distance is given by

W (pd, pg) = inf
γ∈Π(pd,pg)

E(x,y)∼γ [||x− y||2] ,

where Π(pd, pg) is the set of all joint distributions γ(x, y) whose marginals are pd and pg respectively.
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Intuitively, each distribution can be seen as a unit amount of dirt onX and the distance is the minimum
cost of of reshaping the dirt from one distribution such that it takes the shape of the other distribution.
The cost to move the dirt is the amount of dirt to be moved multiplied by the distance to be moved.
The Wasserstein-1 is a metric [Villani 2009, Chapter 6]. In Arjovsky et al. [2017b] it is shown that
the Wasserstein-1 metric is more sensible than the Kullback-Leibler divergence as a cost function
when learning distributions with support on low dimensional manifolds because it does not matter if
the supports are disjoint.
Definition 5.2 (K-Lipschitz function). Given two metric spaces (X, dX) and (Y, dY ), a function
f : X → Y is called K-Lipschitz, for K ∈ N, if for all x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Theorem 5.1 (Kantorovich-Rubinstein duality). The Kantorovich-Rubinstein duality shows that
[Edwards 2011]

W (pd, pθ) = sup
||f ||L≤1

Ex∼pd
[f(x)]−Ex∼pθ

[f(x)] (3)

where the supremum is taken over all 1-Lipschitz functions f : X → R.

Let X be a compact metric space. Let z ∼ p(z) be a Gaussian random variable over another space
Z . Let g : Z × Rd → X be a deterministic function denoted by gθ(z) where θ ∈ Rd and z ∈ Z .
Let pθ denote the distribution of gθ(z). More precisely, let gθ be a feed-forward neural network
parameterised by θ. By Arjovsky et al. [2017b, Corollary 1], gθ is locally Lipschitz and there are
local Lipschitz constants L(θ, z) such that Ez∼p(z) [L(θ, z)] < ∞. It follows by Arjovsky et al.
[2017b, Theorem 3] that there is a solution f : X → R to the problem

max
||f ||L≤1

Ex∼pd
[f(x)]−Ex∼pθ

[f(x)] (4)

and
∇θW (pd, pθ) = −Ez∼p(z) [∇θf(gθ(z))]

where both terms are well-defined.

To find a function f that is a good estimator for the f in Eq. (4) a neural network can be used. Let
{fw}w∈W whereW is a compact space, w ∈ W represents a set of weights and fw a feed-forward
neural network parameterised by w. In the proof of Arjovsky et al. [2017b, Corollary 1] it is shown
that the derivative of a feed-forward neural network is bounded when the weights are bounded, hence
compactness ofW implies that fw are K-Lipschitz for some K that only depends onW . Instead of
Eq. (4) consider the estimate of W (pd, pθ) given by

W (pd, pθ) ≈ max
w∈W

Ex∼pd(x) [fw(x)]−Ex∼pθ(x) [fw(x)] . (5)

The neural network should optimise

min
θ

max
w∈W

Ex∼pd(x) [fw(x)]−Ez∼pθ(z) [fw(gθ(z))] . (6)

Let ncritic ∈ N. Carry out stochastic gradient descent over w on W (pd, pθ) (Eq. (5)), and repeat this
ncritic times. The critic is the name of the function fw, and by applying this method a good critic
fw is found that can be used as the maximum fw in Eq. (6). Note that sampling from gθ(z) with
z ∼ p(z), gives samples from pθ(x). The new parameters w may not lie in the spaceW . A simple
way to enforce the compact constraint is to clip the weights such that they fit inW . Let c be some
small constant, for example c = 0.01 and letW = [−c, c]l then after after each weight update, the
new w is forced to be inW by replacing values outside of [−c, c] with the boundary value. After
training the critic, the generative model gθ is trained. Carry out stochastic gradient descent over θ on
W (pd, pθ) (Eq. (5)) by back-propagating over −Ez∼p(z) [∇θfw(gθ(z))]. Weight clipping is not a
good way to enforce the Lipschitz constraint and it leads to optimisation difficulties [Arjovsky et al.
2017a]. In Section 5.2.4 a different method is covered to improve this.

5.2.4 Wasserstein GAN Improved

In Gulrajani et al. [2017] an alternative to weight clipping for the Wasserstein GAN is found. The
motivation behind this is that the weight clipping in WGAN has lead to optimisation problems and
that it biases the critic towards simpler functions.
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A differentiable function is 1-Lipschitz if and only if the derivative in absolute value is less than or
equal to 1 everywhere. This is used as a soft constraint on the critic loss instead of weight clipping.
Let the critic loss be given by

L = Ex∼pd(x) [f(x)]−Ex∼pθ(x) [f(x)] + λEx̃∼p̃

[
(||∇x̃f(x̃)||2 − 1)2

]
,

where x̃ ∼ p̃ is distributed as x̃ = ux + (1 − u)y where x ∼ pd(x), y ∼ pθ(x), z ∼ pθ(z),
u ∼ U [0, 1]. It is intractable to enforce the gradient constraint everywhere, so instead the distribution
p̃ is chosen such that sampling from p̃ is equivalent to sampling uniformly along the line between
samples from pd(x) and from pθ(x). The coefficient λ ∈ R>0 is chosen by experimentation, and by
Gulrajani et al. [2017], the value of λ = 10 works well in general. In this paper the value λ = 10 is
used and provides good results, further tuning of λ has not been carried out.

The constraint penalises the critic if the derivative is larger than 1, which is the required constraint,
but it also penalises if the derivative is less than 1. In Gulrajani et al. [2017, Appendix C] a one-sided
constraint is considered, however empirically the two-sided constraint performs slightly better.

5.2.5 GAN for Anomaly Detection

The discriminator is learning to discriminate whether a sample came from the real data pd(x) or the
generator p(x). As the GAN is trained, the probability distribution p(x) approaches the probability
distribution pd(x) and the discriminator finds it harder to differentiate between p(x) and pd(x) and
outputs values around 1

2 . The discriminator is not a generalised detector of anomalous data and it
cannot be used to detect whether a sample resembles pd(x) or not. It is trained to maximise the
probability of assigning real training samples a positive label and generated samples a negative label.

Research in anomaly detection GANs has been made, for example with the method anoGAN [Schlegl
et al. 2017]. With anoGAN a standard GAN is trained on healthy data. A new loss function called
the residual loss is introduced, where the idea is for a sample x in the test set to find a z such that
||x−G(z)||1 is minimised. This method for anomaly detection is not examined closer, however it is
a good starting point for further research.

5.3 Convolutional Networks

In the previous neural networks the layers are all fully connected (dense), which means that each
node is connected to all the nodes in the next layer. Instead of dense layers, convolutional layers and
pooling layers can be used, especially when dealing with very large inputs such as for data in the
form of images.

Convolutional networks can capture spatial and temporal dependencies [Saha 2018], usually in
images through the use of filters. Assume the input to the convolutional network is an image with 3
dimensions, width, height, and colour values. In a convolutional layer, a number of filters are passed
over the width and the height of the input by convolution and dot products are computed between the
entries of the filter and the values of the image that the filter is on. Each filter detects different details
in an image. With a convolutional layer, each node is connected to only a local region of the nodes.
In a pooling layer, downsampling is performed along the width and height to reduce the image size.
For a complete explanation of convolutional neural networks, refer to Karpathy [2015].

Instead of applying convolutional networks to images, they will be applied to time-series data. Some
research into this has been tried [Brownlee 2018c; Eddy 2018] however convincing results could not
be found.

5.4 Recurrent Networks

Recurrent neural networks (RNNs) are unlike the feedforward networks from earlier sections, in
that they have loops where the output is fed back into the input and they can have internal memory.
They can use their internal memory to process sequences. They have successfully been used for
handwriting and speech recognition.

The basic form of a RNN is shown in Fig. 5.6. The output v(t) of the unit at time t is fed into the
input of the unit at time t+ 1. In this way a chain of RNN units can be formed. Two types of RNNs
in Section 5.4.1 and Section 5.4.2 are examined.
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v(t−1)

o(t)

x(t)

v(t)h(t)

Figure 5.6: Recurrent neural network unit. The output v(t) of one unit is fed into the
input of the next. The x(t) represents an additional input to the unit and o(t) represents
the output of the unit.

5.4.1 Long Short-Term Memory

In simple recurrent neural networks the output is fed back into the input. They work to an extent,
however they suffered from the vanishing gradient problem (see Section 4.6). Long short-term mem-
ory networks (LSTMs) address this problem and one of their strengths is remembering information
for a long time.

An LSTM unit consists of an input gate, an output gate and a forget gate [Hochreiter et al. 1997]. The
structure of an LSTM unit is given in Fig. 5.7. The output of an LSTM unit is the input of the next
unit.

σ σ Tanh σ

× +

× ×

Tanh

c(t−1)

cell

h(t−1)

hidden

x(t)input

c(t)

h(t)

h(t)output

Figure 5.7: LSTM unit. Source: Leon [2018]. Merging arrows mean concatenation
operation and splitting arrows mean copying operation. The outputs c(t) and h(t) are used
as inputs of the next unit in the chain. Each unit can take an input x(t) and can return an
output h(t).

In Fig. 5.7 the top horizontal line running through the cell represents the cell state. The LSTM can
add information to the cell state via the gates. There are three vertical sections in the LSTM unit
connecting the hidden state with the cell state. From left to right they are called the forget gate, the
input gate, and the output gate.

The forget gate looks at h(t−1) and x(t) and using the sigmoid layer to multiply each element of
c(t−1) by a number in the interval [0, 1] where 0 allows previous value to be forgotten, and 1 allows
the value to be kept.
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In the input gate, the sigmoid layer determines which values should be updated, and the Tanh layer
creates a new candidate vector c̃(t) which is added to the cell state.

The output gate is used to give the output of the LSTM unit and it is based on the cell state. The
sigmoid layer determines which parts of the cell state will be outputted and the Tanh function scales
the values to the range [−1, 1]. For a more detailed explanation, see Olah [2015].

5.4.2 Gated Recurrent Unit

The gated recurrent unit (GRU) [Cho et al. 2014] is a type of recurrent neural network that is similar
to the LSTM but with fewer parameters. In comparison with an LSTM unit, the GRU unit has a
hidden state but not a cell state, furthermore it only has two gates, a relevance (or reset) gate and an
update gate. In Fig. 5.8 the reset gate is represented by rt and the update gate by zt. The update gate
is similar to the forget and input gate of an LSTM, and it decides what information from the previous
state should be retained and what new information to add. The difference is that the LSTM controls
the amount of new memory being added with the input gate and this is independent from the forget
gate.

Figure 5.8: GRU unit. Source: Olah [2015]. The GRU unit is similar to Fig. 5.7 but
simplified since the output of the unit h(t) is both the input to the next unit in the chain
but also the output of the unit itself. Each unit takes an input x(t).

In Fig. 5.8 the drawn gates have the following form

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t.

At time t the GRU unit updates to hidden state ht based on the hidden state ht−1 from time t− 1 and
the new information xt. Note that the output of the GRU unit is equal to its hidden state, that is ht.
The relevance gate rt decides how relevant the previous information is. rt has a sigmoid activation
function so the values lie in the range [0, 1]. This is multiplied with ht−1 and the value is used to
create the new candidate state h̃t. The update gate is denoted by zt and it decides how much of the
previous cell state should be retained and how much of the candidate state h̃t should be used. This is
more clearly shown in the formula above for ht.

In Chung et al. [2014] an empirical comparison of GRU and LSTM is made in the case of music
data and speech signal data. No concrete conclusion was made on which of the two units was better,
however both were shown to be clearly better than a traditional tanh unit.
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6 Data Preparation

Neural networks learn a mapping from input variables to output variables. The scale of each feature
in the input may be different. Unscaled variables may lead to unstable, slow, or failed learning. This
can lead to exploding gradients and large weight values [Brownlee 2019]. To remedy this, all the
inputs are required to be in a comparable range. The preparation of the data before using it to train
a neural network is called data preprocessing, similarly the output of a neural network requires
post-processing. One of the most common types of preprocessing consists of linear rescaling of the
input variables. Furthermore, in this section methods such as standardisation and power transforms
are discussed.

The time-series data that is used for training is of a number of oil commodities with different pricing
ranges. The preprocessing methods in Section 6.1 are applied to the data such that the ranges of the
data is converted to a comparable range.

6.1 Preprocessing Methods

In this section some of the most well-known methods for data preparation are considered. In general
it may not be necessary to take the inverse operation of a data preparation method, for example in the
setting of a classification problem. However, it is important to be able to take the inverse operation
when dealing with regression problems where it is necessary to reconstruct the input. In that case a
preprocessing model should have the structure as in Definition 6.1.

Definition 6.1 (Invertible Preprocessing Method). Given a data set X = {x(i)}i=1,...,M , which
is split into training and validation, Xtrain = {x(i)}i=1,...,k and Xval = {x(i)}i=k+1,...,M . The
preprocessing method, denoted by a function f can be fitted to the training set. ffit(Xtrain) = r =
(r1, ..., rn) a set of learned parameters. The functions f and finv have access to the parameters r.
The training and validation data can be transformed by f with the inverse function given by finv,
more precisely finv(f(x

(i))) = x(i) on the training set, and finv(f(x
(i))) ' x(i) on the validation

set. The size of the learned parameters n, should not be dependent on the size of the dataset M .

The importance here is that the method is only allowed to calibrate parameters on a section of the
data while still expected to perform well on the unseen data. A relaxed version of Definition 6.1 is
considered in Definition 6.2 where the inverse function is permitted to know the first value of the
vector that it is reconstructing.

Definition 6.2 (Semi-invertible Preprocessing Method). Consider a function f as in Definition 6.1,
where fit to the training set ffit(Xtrain). The method is called semi-invertible if to reconstruct x(i)

from f(x(i)) additional information x
(i)
1 needs to be given. Moreover, finv(f(x

(i)), x
(i)
1 ) = x(i) on

the training set, and finv(f(x
(i)), x

(i)
1 ) ' x(i) on the validation set.

In Section 6.3 the methods in Definitions 6.1 and 6.2 are applied to standardisation (Section 6.1.1),
normalisation (Section 6.1.2) and log-returns (Section 6.1.3) techniques.

6.1.1 Standardisation

With standardisation it is assumed that the data is approximately normally distributed. The data is
scaled such that each feature has mean 0 and standard deviation 1. Transform the data to centre it
by removing the mean value of each feature, and scaling each feature by dividing by their standard
deviation.

To check if the data is approximately normal, a QQ-plot or a histogram can be made. The Shapiro-
Wilk test quantifies how likely it is that the data was drawn from a standard normal distribution. The
D’Agostino’s K2 test measures skewness and kurtosis and can be used to measure asymmetry and
normality respectively [Brownlee 2018a]. Measuring the normality of the data is not examined in this
paper.

Often it is assumed that the data is normally distributed, for example in the setup of variational
autoencoders [Kingma et al. 2013, Section 2.1], however this is not always the case. Power transforms
aim to map data from any distribution to as close to a Gaussian distribution as possible. They are
non-linear functions and the most well-known transforms are the Yeo-Johnson transform and the
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Box-Cox transform. The Box-Cox transform [Box et al. 1964] transforms y to y(λ) given by

y(λ) =

{
(y+λ2)

λ1−1
λ1

for λ1 6= 0,

log(y + λ2) for λ1 = 0.

where λ2 is chosen such that y > −λ2. The parameter λ1 is estimated using the likelihood function.
The Box-Cox transform is not further used, but it could be interesting to see its effect on the
performance of the neural networks shown in Section 7 and Section 8.

6.1.2 Normalisation

In data normalisation, the data is linearly scaled such that it fits in the range [a, b] for a, b ∈ R.
Usually the range [0, 1] or [−1, 1] is taken. In the case of binary cross-entropy loss function the range
[0, 1] must be used. Normalisation is usually carried out over the features.

Consider a dataset X = {x(i)}i=1,...,m where x(i) = (x
(i)
1 , ..., x

(i)
n ) ∈ Rn. The dataset X ∈ Rm×n

can be regarded as a matrix of m rows and n columns. Let Xmin = (mini{x(i)
1 }, ...,mini{x(i)

n }) and
similarly for Xmax. Then the normalised data is given by

X′ := (b− a)
X−Xmin

Xmax −Xmin
+ a

where the subtraction in the numerator, and the division is carried out row-wise. That is, (X−Xmin) ∈
Rm×n with the subtraction applied to each row vector x(i) of X. The subtraction (Xmax−Xmin) ∈ Rn

is done element-wise.

In training, normalisation should be fitted on the training set, that is to say, the vectors Xmin and Xmax
should be found using the data in the training set only. If it is also fitted on the basis of data in the
validation set, then the network is given information about the validation set. By saving the values
Xmin and Xmax the output of a neural network can be re-scaled, in the case of an autoencoder for
example.

6.1.3 Log-returns

Log-returns were defined in Definition 2.5. Getting back to the original data, given x1 is as follows.
Let

z1 := x̃1, zi := exp
(yi−1

k

)
=

x̃i

x̃i−1
for i = 2, ..., n.

Then zix̃i−1 = x̃i for i = 2, ..., n. The x̃i are now recoverable and in turn so are xi for i = 2, ..., n,
assuming that x1 is known.

6.2 Filtering Autoencoder Output

The output of the autoencoder is in general not as smooth as the input. Examples of autoencoder
outputs without smoothing applied can be found in Fig. 7.1. This leads to an examination of methods
whereby a smoother curve can be obtained. The easiest solution is to manually apply smoothing to
the result of the autoencoder. An extension to this would be to set the smoothing function as the final
layer of the decoder in the autoencoder network, where the parameters of the smoothing function are
learnable.

Applicable smoothing functions are: the Savitzky-Golay filter, simple moving-average and expo-
nential smoothing. The simple moving average and exponential smoothing models introduce lag
relative to the input data. The Savitzky-Golay filter is interesting because it is capable of preserving
the minimum and maximum of the noisy data. The filter works by fitting neighbouring points with a
polynomial using the linear least squares approximation [Schafer 2011].

Definition 6.3 (Savitzky-Golay). The Savitzky-Golay takes two parameters: N ∈ N where N is the
degree of the polynomial to be fitted, and fix M ∈ N odd where M is the number of neighbouring
points, or window size, that the polynomial is fit to. Let x1, x2, ..., xt ∈ R be a sequence representing
the original noisy curve. Give a smooth version of the curve by y1, y2, ..., yt ∈ R as follows. For
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each j ∈ {1, 2, ..., t} consider the error

Ej =

M−1
2∑

i= 1−M
2

(pj(i)− xj+i)
2

where pj(n) is the N -degree polynomial with coefficients aj,0, ..., aj,N ∈ R given by

pj(n) =

N∑
k=0

aj,kn
k

The coefficients aj,0, ..., aj,N that minimise Ej are found. Let yj = aj,0 for all j ∈ {1, 2, ..., t}.

By experimentation on futures curves outputted by the autoencoder, taking a polynomial order of
5 and a window size of 23 already leads to good results. The difference between input and output
curves of the autoencoder is also reduced by application of the Savitzky-Golay filter, under the MSE
and SMAPE performance metrics, although not considerably. What is key is that the filter does not
adversely affect the performance of the autoencoders from empirical results.

6.3 Application to Time-Series of Futures Curves

Each futures curve is made up of a number of points called tenors (see Section 2.2); for oil curves from
the datasets, each curve is composed of N = 56 tenors. Represent the data by X = {x(i)}i=1,...,M

where x(i) = (x
(i)
1 , ..., x

(i)
N ) ∈ RN . The data X can be viewed as an M × N matrix. Each row

x(i) represents a futures curve and the columns are the tenors, or features as seen in Section 4 and
Section 5. Call the number of tenors (or features) the dimension of the time-series data. The data
has 56 tenors, so the data is said to have dimension 56. The dimension of the futures curves can be
reduced to a dimension of 1, 2, 3, or 4 and this is what will be investigated.

In order to apply compression methods, data preparation needs to be applied to fit the data in the
range [−1, 1] or [0, 1]. This is required because the original data has different unit sizes depending
on the dataset and because the neural network models require data in this range to be able to learn
adequately.

The following invertible preprocessing methods (Definition 6.1) over the data are considered:

• Normalisation over the tenors
• Standardisation over the tenors
• Log-returns over the tenors

In normalisation over the tenors, for each feature column, the data is linearly scaled such that it fits in
the given range. In standardisation over the tenors, for each feature column, the data is scaled such
that it has mean 0 and standard deviation 1. In both normalisation and standardisation methods, the
shape of the individual futures curves may be changed and it may result in the smoothness of the
curve being lost. The shape of the time-series is preserved for each individual tenor. In log-returns
over the tenors, the difference is taken between each curve and the previous one. One can see this
as per column in the dataset represented, take log-returns as described in Definition 2.5. To inverse
taking log-returns over the tenors, it is necessary to preserve the first curve in the series.

Consider the following semi-invertible preprocessing methods (Definition 6.2) over the futures curves,
where the begin price and/or end price value per futures curve is required to restore the curve:

• Normalisation over the curves
• Standardisation over the curves
• Log-returns over the curves

In normalisation over the curves, each curve is individually linearly scaled such that it fits in the given
range. In standardisation over the curves, each curve is individually scaled such that it has mean 0
and standard deviation 1. In this case, the shape of the individual futures curves is preserved, however
the price changes over time are lost, since each curve is fitted in a certain range. In log-returns over
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the curves, for each individual curve take the log-returns as in Definition 2.5. To inverse taking
log-returns over the curves, it is necessary to preserve the first tenor of each curve.

The dimension of the curve needs to be reduced from 56 to 1, 2, 3 or 4. By using a semi-invertible
method, the begin value needs to be preserved, occupying one dimension, and giving one less
dimension whereby to describe the futures curve shape. This makes these methods less than ideal
compared to the invertible preprocessing methods. Further analysis of these semi-invertible methods
is not taken in this paper and restrict ourselves to the invertible methods.

6.3.1 Normalisation over the Tenors

In Fig. 6.1 normalisation over the tenors of WTI NYMEX is applied and the normalised curves
are compared to the original curves. It is important to note that the normalisation does not happen
over the curves, if that were the case each curve would be scaled to fit exactly in the interval [0, 1].
The curves are normalised over the tenors and this is the reason why the shape of each curve is
not necessarily preserved. For curves 1, 2, and 4, the normalised curve has a completely different
shape. The shape of the normalised curve is determined by the shape of the original curve and by
the distribution of each tenor. The normalised curves do preserve the prices, more precisely, the
time-series of scaled prices by looking at a specific tenor has the same shape as original prices. This
can be seen by comparing the price ranges of the curves in the first row compared to the second row.
However, as can be seen in Fig. 6.1 the shape of the curve is not always preserved.
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Figure 6.1: A selection of futures curves (first row) from the WTI NYMEX time series
compared with their normalised curve (second row). The normalisation is taken over the
tenors with the range set to [0, 1].

6.3.2 Standardisation over the Tenors

From Fig. 6.2 it can be seen that standardisation over the tenors is similar to normalisation over the
tenors, with the differences being that the normalised curves lie in a larger range than [0, 1] and that
the curves seem smoother in some instances.
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Figure 6.2: A selection of futures curves (first row) from the WTI NYMEX time series
compared with their standardised curve (second row). The standardisation is taken over
the tenors.

6.3.3 Log-returns over the Curves

The log-returns over the time-series of futures curves for WTI NYMEX is taken, as shown in Fig. 6.3.
The log-returns are similar to normalisation and standardisation over the tenors in that the shape of
the curves are similar, however the values of the log-returns are now relative prices instead of scaled
prices.
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Figure 6.3: A selection of futures curves (first row) from the WTI NYMEX time series
compared with their log-returns (second row). The log-returns are taken over the curves.

6.3.4 Normalisation and Standardisation over the Curves

In normalisation over the curves each curve is fitted such that the maximum value of the curve is
scaled to take the value 1 and the minimum value of the curve is scaled to take the value 0. Therefore
each curve retains its original shape. Only by retaining the original maximum and minimum values
for each curve can the original time-series be recovered. Similar to normalisation over the curves,
in standardisation over the curves each curve is fitted such that the mean of the points on the curve
is 0 and the standard deviation is 1. Only by retaining the original mean and standard deviation
of each curve can the original time-series be recovered. With both normalisation over the curves
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and standardisation over the curves, in order to reconstruct the original time-series, for each curve
two values need to saved. Therefore, applying these methods one has the scaled time-series, and a
time-series of the minimum and maximum values, or a time-series of the mean and standard deviation
of the original curve. This second time-series is required to reconstruct the scaled time-series. The
values in the second time-series need to also be scaled such that it can be passed into a neural network.
This again requires a scaling method, hence normalisation and standardisation over the curves are not
viable options for scaling the data.
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7 Dimension Reduction of Time-Series of Futures Curves

The standard, variational and adversarial autoencoder as well as PCA are dimension reduction
methods that preserve the important information to the latent space. In this section, the performance
of the different techniques is compared, and a comparison is made for how preprocessing methods
(Section 6) affect the compression techniques.

The data from Table 2.1 is used to train and test the models. In Section 2.3 the training and test sets
are described. The datasets Brent ICE, Brent Dated, F35 ROT FB, GO01 ROT FB, HSFO380 GSP
FC and JK ROT FB are used as training data, and the WTI NYMEX dataset is used as test set. The
neural networks are trained on the training sets. Once the neural networks are trained, the model is
run on the test set.

PCA is compared against the autoencoder models covered in Section 5.1. For each model the
parameters are specified. The effect of the size of the latent dimension on the reconstruction of the
data is investigated. The other parameters are kept constant. The number and sizes of the hidden
layers is chosen by some experimentation where the choice of hidden layers (56, 40, 28, 12, 4) seems
to perform fairly well. By this vector it is meant that the first layer is of size 56, the second of size
40, and so on. When the encoder and decoder both have this vector of layers (56, 40, 28, 12, 4), it
is meant that the decoder has layers (4, 12, 28, 40, 56) in reverse order such as to create a two-sided
funnel.
Model 7.1 (PCA). This is the PCA model (Section 3.3) with parameter k = 1, 2, 3, 4. The parameter
k represents the dimension of the lower dimensional linear space that is projected on in the encoding.

The PCA model is included as a benchmark model to compare the autoencoder models against. The
autoencoders are non-linear, while PCA is linear, so in theory the autoencoders should be able to
perform better, however in practice the results are not so clear.
Model 7.2 (Standard Autoencoder). This model is a standard autoencoder (Section 5.1.1) that
encodes a vector of length 56 to a vector of length 1,2, 3 or 4, and decodes back to a vector of length
56. The parameters of the model are as follows:

• latent dimension: k = 1, 2, 3, or 4

• Layers in encoder and decoder: (56, 40, 28, 12, 4, k)

• Activations: leakyReLU(0.1)

• Last activation: linear

• Loss: mean-squared error (MSE)

In the standard autoencoder model (Model 7.2), the hidden layers correspond to a stack of fully
connected layers for the encoder and the decoder, where each hidden layer has as activation function
leakyReLU(0.1). The layers (56, 40, 28, 12, 4, k) for the encoder and decoder represent the following
feed-forward network:

56→ 40→ 28→ 12→ 4→ k → 4→ 12→ 28→ 40→ 56.

The final layer of size 56 has a linear activation function. The loss function used is the mean-squared
error loss function.
Model 7.3 (Adversarial Autoencoder). This model is an adversarial autoencoder (Section 5.1.3)
with the following properties:

• latent dimension: k = 1, 2, 3, or 4

• Layers in encoder and decoder: (56, 40, 28, 12, 4, k)

• Layers in discriminator: (k, 2, 1)

• Activations: leakyReLU(0.1)

• Last activation generator: linear

• Last activation discriminator: sigmoid
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• Generator loss: mean-squared error (MSE)

• Discriminator loss: binary cross-entropy.
Model 7.4 (Variational Autoencoder). This model is a variational autoencoder (Section 5.1.2) with
the following properties:

• latent dimension: k = 1, 2, 3, or 4

• Layers in encoder and decoder: (56, 40, 28, 12, 4, k)

• Activations: leakyReLU(0.1)

• Last activation: linear

• Loss: mean-squared error (MSE).

It is hoped that the variational and adversarial autoencoders perform better than the standard autoen-
coder because they allow for interpolation on the latent space which should mean that they are able to
reconstruct unseen futures curves that look similar to curves from the training set.

7.1 Normalisation over the Tenors

In Fig. 7.1 examples of futures curves versus their reconstruction under the methods PCA, standard
autoencoder, AAE and VAE are examined, where the preprocessing method normalisation over the
tenors is used. For each method the same four futures curves are used as examples. It is clear that
all methods preserve the approximate price ranges of the original curves. For a lot of curves using
normalisation over the tenors a jump occurs at just over the 2 years mark, however this jump does not
seem to occur in Fig. 6.2. A possible reason behind this jump could be that this is being carried over
from the datasets, since in the covariance of the log-returns Fig. 2.4 a spike can be seen at around 2.5
years.

In PCA (Fig. 7.1a), the price of the reconstructed curves seems consistently too high. The noise on
the reconstructed curves is low compared to the autoencoders. The approximate shape is not properly
reconstructed, and in the first three examples the curve dips around year 3. In AE (Fig. 7.1b) there is
a lot of noise in the reconstruction, which can be addressed by applying the Savitzky-Golay filter
(Definition 6.3). For simple curves such as in examples 1 and 3 it performs well, ignoring noise, but
for some curves such as in example 2 the original shape cannot be seen in the reconstruction. In AAE
(Fig. 7.1c) the reconstruction is similar as in Fig. 7.1b. In VAE (Fig. 7.1d) the performance is similar
to that of PCA. Overall, from the examples, it looks like AE and AAE perform better than PCA and
VAE.

In Fig. 7.2 the encoded time-series of the test data is examined, normalised over the tenors and
encoded with PCA, AE, VAE and AAE, with k = 2. Since k = 2 each curve is encoded into a point
in R2, and the two lines in each sub-figure represent the two coordinates of the encoded curve for
each day. For VAE (Fig. 7.2c) one dimension is barely used, since it is almost constant at 0. For
AAE (Fig. 7.2d) there are similarities in the overall trends of both dimensions, suggesting that the
encoding is not optimal. For PCA (Fig. 7.2a) and AE (Fig. 7.2b) is is more difficult to draw concrete
conclusions out of the encoding, however they are better than that of Fig. 7.2c and Fig. 7.2d.

As described in Section 5.1.2 and Section 5.1.3 the variables in the latent space are by construction
multivariate standard normal. The latent space for k = 2 is in R2. An element in the latent space can
be randomly sampled by sampling from the bivariate standard normal distribution. This is shown in
Fig. 7.3 where a 6 by 6 is made. The values on the axis come from the inverse cumulative density
function of the standard normal distribution by inputting 6 values uniformly spaced over the interval
[0.05, 0.95]. The interval [0, 1] is not taken because the inverse cumulative density of 0 and 1 is −∞
and∞ respectively. For each pair of numbers (x, y) from the values along the x-axis and y-axis gives
a sample from the bivariate standard normal distribution. The pair (x, y) is treated as a point from the
latent space, and by decoding this point gives a curve in the original space. This curve is drawn in the
grid. The grid shows how well the VAE and AAE manage to form the latent space such that sampling
from the normal distribution and decoding this is similar to sampling directly from the data.

For the VAE, by Fig. 7.2c it is clear that one dimension is not used and this can again be seen here,
where over one axis everything is constant. The spikes that occur in each reconstruction is ignored
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(a) Normalisation over the tenors and encoded with Model 7.1 PCA.
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(b) Normalisation over the tenors and encoded with Model 7.2 standard autoencoder.
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(c) Normalisation over the tenors and encoded with Model 7.3 AAE.
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(d) Normalisation over the tenors and encoded with Model 7.4 VAE.

Figure 7.1: Comparison of the reconstruction of futures curves under normalisation over
the tenors for Model 7.1 PCA, Model 7.2 AE, Model 7.4 VAE, and Model 7.3 AAE for
k = 2. Blue is the original futures curve and orange is the reconstruction.

for the analysis. Over the other axis, fairly smooth changes in the curve shape is seen moving along
the axis, however some of the futures curve shapes that appear often in the dataset are missing, and
this shows that the VAE is not be able to reconstruct these well.

For the AAE, the curves show changes over both axes. In each diagonal opposing corner of the grid
inversely shaped curves can be seen, in the one a downward sloping curve and in the other an upward
sloping curve. This shows that the AAE has been much more successful at learning to encode the
data compared to the VAE. There is a lot of noise in the curves and again a spike in each one.

42



2014-07
2015-01

2015-07
2016-01

2016-07
2017-01

2017-07
2018-01

2018-07

Date

2

1

0

1

2

3

4

5

La
te

nt
Va

lu
e

(a) Latent encoding of Model 7.1 PCA.
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(b) Latent encoding of Model 7.2 AE.
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(c) Latent encoding of Model 7.4 VAE.
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(d) Latent encoding of Model 7.3 AAE.

Figure 7.2: Comparison of the latent encodings for Model 7.1 PCA, Model 7.2 AE,
Model 7.4 VAE, and Model 7.3 AAE for k = 2 with normalisation over the tenors. The
blue and orange curves represent the first and second dimensions of the latent space.
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Figure 7.3: Latent space of the Model 7.4 VAE and Model 7.3 AAE for k = 2 with
normalisation over the tenors. The grid can be seen as an x, y graph where along each
axis take 8 linear steps in the range [0.05, 0.095] and plug it into the inverse standard
cumulative normal distribution function.
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7.1.1 Results

Each of the models PCA, AE, AAE and VAE is trained on the data and SMAPE (Section 3.1) is used
to gauge the performance of the model. For each reconstructed curve the SMAPE value is computed
and from all the SMAPE values the mean and variance are computed. The training procedure is
repeated 5 times because there is a certain randomness in the neural network methods. The initial
values in the network are random and this gives variations in the final learned network. The calibration
of the PCA method on the other hand is fully deterministic. In each method, the test data is used to
determine the result. The test data is scaled by normalising over the tenors, encoded, decoded and
then rescaled.

Method Parameters SMAPE, mean SMAPE, std

Model 7.1 PCA k = 1 0.044 0.019
Model 7.2 AE k = 1 0.033 0.020
Model 7.3 AAE k = 1 0.033 0.021
Model 7.4 VAE k = 1 0.051 0.032
Model 7.1 PCA k = 2 0.027 0.0028
Model 7.2 AE k = 2 0.011 0.0084
Model 7.3 AAE k = 2 0.025 0.017
Model 7.4 VAE k = 2 0.054 0.035
Model 7.1 PCA k = 3 0.026 0.0036
Model 7.2 AE k = 3 0.0085 0.0063
Model 7.3 AAE k = 3 0.015 0.013
Model 7.4 VAE k = 3 0.053 0.032
Model 7.1 PCA k = 4 0.026 0.0037
Model 7.2 AE k = 4 0.0071 0.0030
Model 7.3 AAE k = 4 0.011 0.0045
Model 7.4 VAE k = 4 0.054 0.033

Table 7.1: Results for the reconstruction error for various methods with different latent dimension k.
The data preprocessing used is normalisation over the tenors. The results are rounded to 2 significant
figures. The SMAPE reconstruction error is applied to each individual input and output curve. The
mean and variance are of all the reconstruction errors from the test set.

The results in Table 7.1 are examined. From best to worst: AE, AAE, PCA, VAE. For each k for
the model that performs the best, the standard deviation has approximately the same order as the
mean. By increasing k the mean and standard deviation generally become smaller. It is clear that
the variational autoencoder is not suitable for this task. It also does not improve for larger k. It is
possible that the variational autoencoder applies a too large a restriction on the latent space, whereby
not all curves can have an accurate representation on the latent space. It is also interesting to see that
the standard autoencoder performs better than the adversarial autoencoder. The performance decrease
of using the AAE and not the AE does however come with the advantage of being able to directly
sample form the latent space.

7.2 Standardisation over the Tenors

In this section a similar analysis as in Section 7.1 is made, with the important change of using
standardisation over the tenors instead of normalisation over the tenors. In Fig. 7.4 a similar
comparison as in Fig. 7.1 is made. For each model, the prices of the reconstructed curves lie in the
same range as the original curves.

For PCA in Fig. 7.4a a remarkably good reconstruction with little noise is achieved. The AE and
AAE models do quite well, however they have a lot of noise and have some difficulties reconstructing
the exact shape of the last example and cannot reconstruct the second example too well either. The
VAE Fig. 7.4d has difficulties reconstructing the shape of all the examples and it is not likely to
perform well overall. In comparison with Section 7.1, no spike is seen at the 2.5-year mark, and this
hints that Section 7.2 coupled with dimension reduction techniques is more robust against errors in
the training data.
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(a) Standardisation over the tenors and encoded with Model 7.1 PCA.
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(b) Standardisation over the tenors and encoded with Model 7.2 standard autoencoder.
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(c) Standardisation over the tenors and encoded with Model 7.3 AAE.
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(d) Standardisation over the tenors and encoded with Model 7.4 VAE.

Figure 7.4: Comparison of the reconstruction of futures curves under standardisation
over the tenors for Model 7.1 PCA, Model 7.2 AE, Model 7.4 VAE, and Model 7.3 AAE
for k = 2.

In Fig. 7.5, the latent encodings of the test data are examined. For the VAE Fig. 7.5c both dimensions
are used this time, however there are some similarities in the two curves. This shows that the VAE
does not optimally use both available dimensions.

In Fig. 7.6 the VAE performs much better this time than in Fig. 7.3. For both the VAE and the AAE,
samples from the decoder can in some cases look quite noisy. In both cases, the latent space maps to
a variety of different shaped curves, and it is difficult to tell the performance solely by looking at
these grids.
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(a) Latent encoding of Model 7.1 PCA.
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(b) Latent encoding of Model 7.2 AE.
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(c) Latent encoding of Model 7.4 VAE.
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(d) Latent encoding of Model 7.3 AAE.

Figure 7.5: Comparison of the latent encodings for Model 7.1 PCA, Model 7.2 AE,
Model 7.4 VAE, and Model 7.3 AAE for k = 2 with standardisation over the tenors.

1.64

0.74

0.23

-0.23

-0.74

-1.64

-1.64

-0.74 -0.23 0.23 0.74 1.64

(a) Variational Autoencoder (VAE)

1.64

0.74

0.23

-0.23

-0.74

-1.64

-1.64

-0.74 -0.23 0.23 0.74 1.64

(b) Adversarial Autoencoder (AAE).

Figure 7.6: Latent space of the Model 7.4 VAE and Model 7.3 AAE for k = 2 with
standardisation over the tenors. See Fig. 7.3 for explanation of what the grid represents.

46



7.2.1 Results

The results of dimension reduction is shown, using the models PCA, AE, AAE and VAE, with the
pre-processing method standardisation over the tenors. The dimension reduction techniques are
applied and the reconstruction errors are computed using SMAPE. For k = 1 all four models perform
similarly. For k = 2, 3, 4 PCA performs the best followed closely by AE and AAE. The VAE does
not perform well on k = 2, 3, 4 compared to the other models. There are hardly any performance
gains for k = 3 or 4 compared to k = 2.

The PCA model outperforms the neural networks for k > 1, and this was also hinted at earlier when
examining Fig. 7.4. Furthermore, for each model, applying standardisation over the tenors gives
better performance compared to normalisation over the tenors. A reason why is that in comparison to
normalisation over the tenors, there are no jumps just past the two year mark, which would effect the
SMAPE score. These jumps may come from errors in the data causing outliers. The results suggest
that standardisation over the tenors may be more robust against these errors.

Method Parameters SMAPE, mean SMAPE, std

Model 7.1 PCA k = 1 0.032 0.023
Model 7.2 AE k = 1 0.025 0.016
Model 7.3 AAE k = 1 0.025 0.016
Model 7.4 VAE k = 1 0.024 0.013
Model 7.1 PCA k = 2 0.0043 0.0026
Model 7.2 AE k = 2 0.0073 0.0039
Model 7.3 AAE k = 2 0.0086 0.0061
Model 7.4 VAE k = 2 0.015 0.0085
Model 7.1 PCA k = 3 0.0032 0.0020
Model 7.2 AE k = 3 0.0065 0.0033
Model 7.3 AAE k = 3 0.0065 0.0033
Model 7.4 VAE k = 3 0.016 0.010
Model 7.1 PCA k = 4 0.0030 0.0019
Model 7.2 AE k = 4 0.0065 0.0036
Model 7.3 AAE k = 4 0.0083 0.0052
Model 7.4 VAE k = 4 0.016 0.0096

Table 7.2: Similar to Table 7.1 except now using the preprocessing method: standardisation over
tenors.

7.3 Log-Returns over the Tenors

A similar analysis as in Section 7.1 and in Section 7.2 is made but now using log-returns over the
tenors. From the figures below it is clear that using log-returns over the tenors for encoding futures
curves delivers unusable results.

The reconstructed curves for PCA and for the autoencoders AE, AAE and VAE in Fig. 7.7 are in
most cases not in the same price range as the original curves. The reconstructed curves contain an
extremely large amount of noise, from which it is impossible to see the shape of the original curve.
This indicates that using log-returns over the tenors for encoding futures curves is not possible. There
is not so much reason to consider the latent encodings, however for completeness they are included in
Fig. 7.8 and Fig. 7.9. The latent encoding of the test data is shown in Fig. 7.8 and it looks very much
like noise. This is very different to what is seen for normalisation over the tenors and standardisation
over the tenors in Fig. 7.2 and Fig. 7.5 respectively. The grid showing the representation of the latent
space in Fig. 7.9 shows only one shape of curve, meaning that the VAE and AAE have only learnt to
encode one curve shape. This is not useful for encoding futures curves.

The latent space of the VAE and AAE is shown in Fig. 7.8 and it is a constant grid, showing that
neither have been able to learn the representation of the data. It is clear that using log-returns over
the tenors is an ineffective pre-processing method for learning futures curves.
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(a) Log-returns over the tenors and encoded with Model 7.1 PCA.
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(b) Log-returns over the tenors and encoded with Model 7.2 standard autoencoder.
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(c) Log-returns over the tenors and encoded with Model 7.3 AAE.
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(d) Log-returns over the tenors and encoded with Model 7.4 VAE.

Figure 7.7: Comparison of the reconstruction of futures curves under log-returns over
the tenors for Model 7.1 PCA, Model 7.2 AE, Model 7.4 VAE, and Model 7.3 AAE for
k = 2.
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(a) Latent encoding of Model 7.1 PCA.
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(b) Latent encoding of Model 7.2 AE.
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(c) Latent encoding of Model 7.4 VAE.
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(d) Latent encoding of Model 7.3 AAE.

Figure 7.8: Comparison of the latent encodings of the test data for Model 7.1 PCA,
Model 7.2 AE, Model 7.4 VAE, and Model 7.3 AAE for k = 2 with Log-returns over the
tenors.
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(a) Variational Autoencoder (VAE)
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(b) Adversarial Autoencoder (AAE)

Figure 7.9: Latent space of the Model 7.4 VAE and Model 7.3 AAE for k = 2 with
log-returns over the tenors. See Fig. 7.3 for explanation of what the grid represents.
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7.3.1 Results

The SMAPE scores of the test data when using the preprocessing method log-returns over the tenors
with the dimension reduction models PCA, AE, AAE and VAE, is examined in Table 7.3. The
reconstruction errors are much larger than when using normalisation or standardisation over the
tenors. From Fig. 7.7 it can be seen that AE, AAE, and VAE produce extremely noisy curves, and this
is also shown in the results where these models perform much worse than PCA by an order of 10. To
encode futures curves it would therefore not be wise to use log-returns as the preprocessing method.

Method Parameters SMAPE, mean SMAPE, std

Model 7.1 PCA k = 1 0.086 0.032
Model 7.2 AE k = 1 0.50 0.28
Model 7.3 AAE k = 1 0.22 0.12
Model 7.4 VAE k = 1 0.40 0.19
Model 7.1 PCA k = 2 0.030 0.01
Model 7.2 AE k = 2 0.18 0.11
Model 7.3 AAE k = 2 0.15 0.087
Model 7.4 VAE k = 2 0.42 0.27
Model 7.1 PCA k = 3 0.033 0.018
Model 7.2 AE k = 3 0.35 0.19
Model 7.3 AAE k = 3 0.13 0.075
Model 7.4 VAE k = 3 0.37 0.20
Model 7.1 PCA k = 4 0.024 0.012
Model 7.2 AE k = 4 0.27 0.17
Model 7.3 AAE k = 4 0.15 0.13
Model 7.4 VAE k = 4 0.35 0.21

Table 7.3: Data Preparation: Log-returns over the tenors.

7.4 Dimension Reduction over Windows of Futures Curves

Previously in this chapter the dimension reduction techniques have been constructed such that they
encode a futures curve, represented by a vector of length 56, to an encoded curve of length 1, 2, 3, or 4.
Consider an autoencoder that encodes a sequence of futures curves into a sequence of encoded futures
curves. Such a sequence is called a window. The motivation behind this is that over a time-series
of futures curves the change in curve shape over time is usually smooth, so there are similarities
between adjacent curves. An autoencoder should hopefully be able to pick up on these similarities
and thereby lead to a better encoding compared to encoding single futures curves.

The autoencoder takes a window of size 20. The input array for the autoencoder is (20, 56), this is
flattened to a vector of length 1120, and the same autoencoder model as Model 7.2 is applied.

Method Parameters SMAPE, mean SMAPE, std

standardisation over tenors k = 2 0.057 0.046
normalisation over tenors k = 2 0.014 0.0072
log-returns over tenors k = 2 0.030 0.087

Table 7.4: Dimension reduction over windows of futures curves using a dense autoencoder.

7.5 Semi-Invertible Preprocessing Methods

The semi-invertible preprocessing methods discussed were: normalisation over the curves, standard-
isation over the curves and log-returns over the curves. These methods are not further examined
because after some preliminary testing they were found perform much worse compared to the in-
vertible preprocessing methods. The main problem with these methods is that the scaled data is not
enough to reconstruct the original data. The additional data required to rescale the data must also be
pre-processed. This leads to a complex setup to preprocess data.
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7.6 Conclusion

The results for the three data preprocessing techniques: normalisation over the tenors, standardisation
over the tenors, and log-returns over the tenors, followed by the dimension reduction techniques:
PCA, AE, AAE, and VAE, are examined. On the test set, standardisation over the tenors performs in
all cases better than normalisation over the tenors and log-returns over the tenors. The log-returns
over the tenors give dramatically poor results and this is not further used for dimension reduction. In
Table 7.5 a comparison of the best results for each k from Tables 7.1 and 7.2 is made. For k = 2, 3, 4,
standardisation performs more than twice as good as normalisation. One factor affecting the results
maybe be the peaks appearing in the data for the normalisation method, which would negatively
affect the SMAPE.

Method Parameters SMAPE, mean SMAPE, std

Model 7.2 AE k = 1 0.033 0.020
Standardisation, Model 7.4 VAE k = 1 0.024 0.013
Model 7.2 AE k = 2 0.011 0.0084
Standardisation, Model 7.1 PCA k = 2 0.0043 0.0026
Model 7.2 AE k = 3 0.0085 0.0063
Standardisation, Model 7.1 PCA k = 3 0.0032 0.0020
Normalisation, Model 7.2 AE k = 4 0.0071 0.0030
Standardisation, Model 7.1 PCA k = 4 0.0030 0.0019

Table 7.5: Comparison of best results under standardisation over the tenors and normalisation over
the tenors.

Considering standardisation over the tenors, PCA gives the smallest reconstruction error, followed
by Model 7.2 AE and AAE. This is a surprising result since the PCA method is linear, while the
Autoencoder used is non-linear. The advantage of using the AAE instead of PCA, sacrificing the
performance of PCA for the slightly worse performance of AAE, is that with AAE it is possible to
sample from a normal distribution and feed this into the decoder to sample curves. This cannot be
done with PCA as it is not a generative method and there is no smoothness property forced on the
latent space.
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8 Generative Adversarial Networks for Time-Series Simulation

In this section GANs are examined for their use in time-series simulation. Simulations of time-series
of futures curves are made using GAN methods and a comparison is made to the Andersen Markov
model (Section 3.2) which acts as the benchmark model. In Section 8.1 a simplified case is considered
where a one-dimensional time series is simulated using GANs and this provides the motivation for
simulating a time-series of futures curves (Section 8.2) using GANs.

8.1 Spot Price Time-Series Simulation

From the datasets of time-series futures curves, the short ends of the curves are taken to give a
one-dimensional time-series, that is for each futures curve represented by a vector, the first element
in the vector is the spot price and this is referred to as the short end. Therefore for each date in the
time-series there is one scalar value representing the spot price.

In Model 8.1 a model to simulate time-series data is set up. The conditional GAN (cGAN Sec-
tion 5.2.2) is used in this model. The time-series is broken down into intervals of 42 steps, which
are referred to as time-series windows and these windows are used as samples for the network. The
conditional GAN is trained such that given a window of 42 steps as the conditional data, it should
generate the window of 42 steps that follows. Once the cGAN is trained, condition on the first 42
steps of the test set, to simulate the next 42 steps. The simulated window is compared to the true
window from the data using SMAPE to give a measure of the performance of the model.

To prepare the data for the cGAN two preprocessing methods are applied. First, standardisation is
applied such that the values fitted to the right range and second log-returns are taken such that the
cGAN is given relative prices. Only standardisation over the tenors is considered and normalisation
over the tenors is no longer used because from Section 7.2 standardisation over the tenors performs
decisively better.
Model 8.1 (Spot Price Time-Series Simulation). Consider the following model:

1. Preprocessing with standardisation over the tenors

2. Preprocessing with log-returns over the tenors

3. cGAN trained on windows of length 42 of the log-returns.

4. On the trained cGAN model input the first 42 steps of the test set. The cGAN returns a
matrix (100, 42), which represents a 100 simulations each of 42 steps.

5. Reverse preprocessing methods on the cGAN output.

In Fig. 8.1 an example of the output of the trained conditional GAN is shown. The simulated grey
paths move similarly to the red (real) path. The SMAPE is used to measure how well the simulations
compare to the real path.

If the length of the simulation needs to be increased, either the window size that the model is trained
on can be increased, or the trained cGAN can be recursively used. More clearly, by recursively using
the cGAN, the simulated time-series is fed back into the cGAN to get a simulation of the next 42
days conditioned on the previous 42 days.

Method SMAPE, mean SMAPE, std

GAN 0.14 0.057
WGAN 0.14 0.036

Table 8.1: Results for Model 8.1 with data preprocessing standardisation over tenors followed by
log-returns over tenors. No dimension reduction is applied.
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Figure 8.1: GAN conditioned on windows of length 42. The red line shows the real
time-series, the grey lines show 100 simulated time-series for the following 42 time-steps,
and the blue is one such example of the 100 simulated time-series paths.

8.2 Time-Series of Futures Curves Simulation

A time-series of futures curves can be represented by a matrix (or array) where the columns represent
tenors and the rows represent dates, with a row being a futures-curve (Definition 2.3). In Section 8.1,
the time series was given as a vector. To apply Model 8.1 but to a matrix, the matrix can be flattened
into a vector, more clearly, if the matrix is of size m× n this can be reshaped into a vector of length
m · n. For time-series data with the number of tenors n > 4 it is found that the GAN model trains
very slowly. Since the time-series data has n = 56 tenors it is not possible to use the GAN model
directly. Instead the dimension reduction techniques covered in Section 7 are applied to encode the
data to a smaller dimension and feed the encoded data into the GAN. The GAN model is trained on
the encoded data, and simulates according to the encoded data.

In Section 7.6 it is found that the best dimension reduction models are PCA, AE and AAE with latent
dimension k = 2 and using the preprocessing method standardisation over the tenors on the data.
Therefore in this section, the methods used are restricted to these.

Consider Model 8.2 given as the extension to Model 8.1 with the addition of using dimension
reduction.
Model 8.2 (Time-Series Futures Curves Simulation). This model extends Model 8.1 with the addition
of dimension reduction. The model is set out in the steps below. The training and test datasets are
represented as matrices of size m × n, where m the number of time-steps and n is the number of
tenors. The number of tenors is n = 56. The preprocessing methods are applied to each dataset
individually.

1. Apply preprocessing with standardisation over the tenors to the data.

2. Train one of the dimension reduction models, PCA, AE or AAE, and apply to the test set.

3. Apply reprocessing with log-returns over the tenors to the encoded data.

4. Train the conditional GAN on windows of length 42 of the log-returns of the encoded
training sets. Take the first window of the log-returns of the encoded test set and use the
conditional GAN on this set.

On the generated data take the inverse operations:
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1. Undo log-returns over the tenors by providing the first futures curve of each set.

2. Decode using the used dimension reduction method.

3. Undo the standardisation over the tenors for each set.

Given the first window of length 42 from the test set, the next window of 42 futures curves can be
simulated. This can be compared to the real futures-curves and the performance can be measured
using SMAPE.

In Definition 2.5 the parameter k represents the multiplication factor and the parameter c represents
the addition factor. By examining the ranges of the encoded log-returns when applying Model 8.2 the
parameter values k = 10 and c = 25 are chosen. This choice in parameters leads to a good learning
ability of the conditional GAN. The choice of c is to make the values positive such that the logarithm
can be taken. The multiplication factor is chosen such that the log-returns are approximately in the
range [−1, 1].
In Fig. 8.2 3d plots of futures curves time-series of length 42 are shown. The plot in Fig. 8.2a is of
the second set of 42 futures-curves from the test set. This is compared to 3 simulations made by
the cGAN from Model 8.2. In general, observe that the simulations are more volatile than the real
time-series by examining the plots.

Term to maturity (years)

0
1

2
3

4
Time

04-10-2014
14-10-2014

24-10-2014
03-11-2014

13-11-2014
23-11-2014

P
ric

e
($

)

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

(a) Real.

Term to maturity (years)

0
1

2
3

4
Time

04-10-2014
14-10-2014

24-10-2014
03-11-2014

13-11-2014
23-11-2014

P
ric

e
($

)

84

86

88

90

92

94

96

98

(b) Simulated 1. SMAPE 0.11
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Figure 8.2: Comparison of the real data compared to 3 simulations using PCA with GAN.

The results for combinations of dimension reduction methods PCA, AE and AAE coupled with
generative models GAN, GAN-CONV and WGAN are shown in Table 8.2. All of the combinations
of methods give results quite close to each other. Overall PCA performs the worst, since although the
mean is roughly the same in the case of the GAN and WGAN, the standard deviation is almost double.
The GAN-CONV with PCA has a very low standard deviation, however the mean is the highest for
the three methods under PCA showing that PCA GAN-CONV performs consistently badly.
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(a) Covariance of real data.
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Figure 8.3: Comparison of the covariance of the log-returns of the real data and simula-
tions using PCA with GAN.

For the three GAN models under AE, the means are very close to each other, and the standard
deviations are the lowest compared to PCA and AAE. For the GANs under AAE, the GAN and
WGAN perform similarly to in the AE case. The GAN-CONV again performs poorly and worse than
in the PCA case.

In general the GANs under AE perform better than under PCA or AAE and the best performing
model is AE GAN-CONV. It is surprising that the combination of AE with GAN-CONV performs
well because the combinations of PCA with GAN-CONV and AAE with GAN-CONV perform the
worst. This conclusion comes from the results in Table 8.2 and is based only on empirical evidence.

Method SMAPE, mean SMAPE, std

PCA GAN 0.090 0.045
PCA GAN-CONV 0.13 0.0092
PCA WGAN 0.084 0.042
AE GAN 0.085 0.028
AE GAN-CONV 0.083 0.01
AE WGAN 0.078 0.025
AAE GAN 0.082 0.033
AAE GAN-CONV 0.15 0.024
AAE WGAN 0.074 0.029

Table 8.2: Data Preparation: 1. standardisation over tenors. 2. log-returns over tenors. Dimension
reduction applied with k = 2.
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In order to generate larger simulations there are two possibilities with Model 8.2. The first is that
the model can be trained on larger sized windows. The disadvantage of this is that this reduced
the amount of training data available because for a larger window size the training data splits into
a smaller number of such windows. The second method is to repeatedly apply Model 8.2. In this
procedure the simulated output of the model is fed back into the model as the window that should be
conditioned on. This can be repeated multiple times to obtain a simulation of length r · 42 for r ∈ N
applications of the model.

The benchmark model in this paper is the Andersen Markov model (AMM), see Section 3.2. The
AMM is calibrated on the first 42 curves of the test set, to simulate the next 42 curves, and repeating
this 100 times the SMAPE mean of 0.26 is found with a standard deviation of 0.15. Comparing this
with the results of the GAN models in Table 8.2, all GAN models perform better than the AMM,
with AE GAN-CONV having a mean SMAPE 3 times smaller than the mean SMAPE of AMM, and
standard deviation 1/10th the size.

The simulations produced by the AMM in Fig. 3.1 can be compared with those produced by the GAN
model Fig. 8.2. In the GAN simulations, the curves look much more like the real curves in that they
are not perfectly smooth and are not only increasing or decreasing as in the AMM simulations. As
discussed in Section 3.2, this is a constraint of the AMM.

The covariance log-returns of the real and simulated data from Fig. 8.2 are shown in Fig. 8.3. This
can be compared with the covariance of the log-returns of the entire test set in Section 2.4. It is clear
that by looking at the covariance of log-returns of a section of the test data as in Fig. 8.3a, that the
plot is a lot less smooth than over more steps. Figs. 8.3b to 8.3d show that the covariance plots have a
more complex nature than the approximately decreasing surface shape in Fig. 8.3a. This could be
due to training the GAN on too small windows of time-series data.
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9 Time-Series Simulation with RNNs

Sequence to sequence models have been used for language translation models to translate sentences
from one language to another, for abstract text summarisation and for text generation, to name a few
examples. Recently sequence to sequence models have been used for time-series simulation [Tonin
2019], motivated by their ability for good pattern extraction from the input space where the input
can be long sequences. The memory properties of RNN networks (see Section 5.4) could be useful
in analysing time-series data, since this can give the model the ability to recognise patterns, which
would be useful for simulation.

The examples in Tonin [2019] were reproducible when using GRU cells to make predictions on
sequences of sine curves with added noise and performed well at predicting the next 42 steps. This is
a many-to-many RNN model that is composed of an encoder and a decoder. The encoder and decoder
in this case do not form an autoencoder as previously seen, in this case the output of the decoder is not
trained the resemble the input of the encoder. Instead they are used to split the time-series prediction
problem into two parts. The task for the encoder is to capture the current state of the system. Using
the current state of the system, the task for the decoder is to make a simulation of the time-series in
the future. The encoder and decoder are RNNs made up of a number of GRU cells. LSTMs could be
used instead as well. Two GRU cells with output space of size 35 for both the encoder and decoder is
used. The input sequence length for the encoder is 42, the output sequence length of the decoder is
also 42. An example of the RNN simulating a sine curve with noise can be seen in Fig. 9.1. The RNN
manages to predict the sine curve frequency reasonably correctly, but it does not simulate randomness
in the amplitude.

Using the same model but training on time-series of short end of futures curves, the same as in
Section 8.1 with data pre-processing standardisation followed by taking log-returns as in Model 8.1, is
wholly ineffective and the prediction from the RNN is a constant time-series set to 0. This can be seen
in Fig. 9.2 where the time-series shows the true log-returns from the data and the simulated log-returns
from application of the model. A reason for the non-working model may be that the parameters are
not configured correctly for this different data, or alternatively the RNN may be incapable of finding
patterns in the data. The patterns behind oil prices are considerably more complex than sine curves
with added noise.

Comparisons are made between classical and machine learning algorithms for time-series simulation
in Brownlee [2018b] and the author concludes that RNNs and LSTMs perform poorly against classical
methods on univariate datasets. The taxi company Uber has used LSTMs with success to forecast
user demand of their services [Laptev et al. 2017]. It may be that RNN models require expert tuning
to perform well.

0 20 40 60 80

2

1

0

1

2

3
True values
Prediction

Figure 9.1: Network of GRU cells predicting the movement of a time-series of a sine
curve with added noise. The example is from Kompella [2018].
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Figure 9.2: Network of GRU cells predicting the log-returns of a time-series on test data.
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10 Simulation of Time Series Data with Missing Values

Imputation is filling in missing data with suitable values based on available information. Imputation
methods can be categorised as discriminative or generative. The focus is on generative methods based
on deep learning. In the literature, the majority of methods are either extensions of the autoencoder
model or of the generative adversarial model. The Generative Adversarial Imputation Network
(GAIN) [Yoon et al. 2018] is examined in this section. The GAIN model is an extension of the
generative adversarial network.

The generator is given a sample of corrupted data knowing which values are corrupted, and a random
noise vector. The generator outputs a completed vector conditioned on this information.

The discriminator receives a complete vector and attempts to determine which values are real and
which values have been generated by the generator. Additional information is provided to the
discriminator in the form of a hint vector, that provides partial information in the form of the
probability that a value has been generated. This hint vector is used to steer the focus of the
discriminator and it ensures that the generator learns the true data distribution.

One advantage of the GAIN model is that it can be trained on data that is already missing values, and
does not require complete data unlike other imputation models such as the denoising autoencoder
(DAE)

Consider the space X = X1 × . . . × Xd. Let the true data distribution be x ∼ p(x) with x =

(x1, . . . , xd) over this space. Consider the space X̃ = X̃1 × . . .× X̃d where X̃i = Xi ∪ {∗} where
∗ is a point that is not in Xi and represents a corrupted point. Let the data distribution be given by
x̃ ∼ p(x̃) over the space X̃ . For a x̃ define the associated mask vector m = (m1, . . . ,md) in {0, 1}d
as follows. In x̃ the corrupted points are represented by {∗}, and for every x̃ there is a corresponding
m where mi = 1 if x̃i ∈ Xi and mi = 0 if x̃i = ∗.
Let the generator be given by G : X̃ × {0, 1}d× [0, 1]d → X , where the generator takes an x̃ ∼ p(x̃)
with corresponding m (that can be derived from x̃), and a d-dimensional noise vector z ∼ p(z). The
generator is the identity for the values x̃i in the vector x̃ where mi = 1. Let the distribution of G be
given by x̂ ∼ p(x̂).

LetH be the hint space, which can be simply taken asH = [0, 1]d. Let the discriminator be given by
D : X ×H → [0, 1]d. Let the hint distribution be h ∼ p(h|m) over H, where the mask vector m
corresponds to the vector x ∈ X . The amount of information contained in h about m is controlled
with p(h|m). In Yoon et al. [2018] it is shown that if not enough information about m is passed to D
then there are multiple distributions that G could learn that are all optimal w.r.t. D.

The generator G and the discriminator D are trained similar to in the conditional GAN (Section 5.2.2).
For x̃ ∼ p(x̃) with associated m, and z ∼ p(z) noise, let

x̄ := G(x̃,m, (1−m)� z),

x̂ := m� x̃+ (1−m)� x̄,

where � is the element-wise product. Here x̄ is the vector of only the imputed values, and x̂ is the
new vector containing the original data and the imputed values.

Let h̃ ∼ (Bern(p))d be a d-dimensional vector of independent Bernoulli distributed values with
probability p. The hint is defined as h := m� h̃. The value p is the probability of keeping values in
the mask for the hint. Choose p = 0.1 as that performs well according to Yoon [2019].

The discriminator D is given the imputed x̂ from the generator and a hint vector h which gives
information about some of the mask values. Write the discriminator as D(x̂,h). The discriminator
returns a vector representing the probability of each element in x being imputed. Let

v(G,D) = Ex̃,h̃,z [m logD(x̂, h) + (1−m) log(1−D(x̂,h))]

where x̂ is generated by G. The training procedure follows similarly to the conditional GAN in
Section 5.2.2.

Consider the spot prices of the time-series, that is the short end of the futures curves, similar to in
Section 8.1. Missing values over the training and test time-series are artificially created by randomly
setting small intervals of 5-10 days as missing. The standardisation preprocessing method is applied
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(a) Test set with missing data
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(b) Test set with data filled in with GAIN

Figure 10.1: GAIN simulations on short end of WTI NYMEX with missing data. In
Fig. 10.1a the missing data is represented by the latent value of 0 and this is shown in the
graph by vertical lines going to 0.

to the data. The GAIN model is trained on the data with missing values and an example of imputation
on the test set is shown in Fig. 10.1. It can be seen in Fig. 10.1b that the imputation adds a lot of noise
to the time-series rather than filling in the missing values by interoplation with some small amount of
noise like a classical model could do. Adjusting the p value for the hint vector does not give better
results. Using log-returns data instead of standardised data seems to cause much instability in the
model and further research would need to be taken to understand where this comes from. At the
moment, the model as it stands is not useful for data imputation.
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11 Detecting Unrealistic Scenarios

When working with large datasets from multiple sources, it can often be the case that there are
problems with the data. When there are errors in the data, the data shows unrealistic market scenarios.
For oil futures time-series, such unrealistic scenarios can consist of: pricing jumps in futures curves,
constant priced futures curves, completely corrupt futures curves, and large pricing jumps and shape
changes between day-to-day futures curves. Futures time-series are volatile over time and there
is volatility in day-to-day futures curves however the shape of the futures curves usually changes
gradually.

Given training data of oil futures where the data has been checked for errors, a model can be trained
to detect unrealistic scenarios on other datasets. Model 11.1 can provide a value for how realistic a
curve is. The model works by running curves through a trained autoencoder, where the autoencoder is
trained on realistic data, and then the SMAPE value is calculated between the original curve and the
reconstruction. If the reconstruction is good, then a low SMAPE value should be returned, while if
the reconstruction is bad a high SMAPE value should be returned. The idea behind the model is that,
the autoencoder works well on curves it has seen and also works well on interpolations between seen
curves. Since the autoencoder has been trained on realistic curves, it can reconstruct those curves
well. However, for curves it has not seen before, that are not similar to curves it has seen, it will not
be able to reconstruct them well and this will lead to a high SMAPE score.

The model only takes into account the shape and pricing of individual futures curves. It does
not examine whether futures curves over time are realistic. This could be done with a windowed
autoencoder instead. This is a possibility for future research and it is not examined here.
Model 11.1 (Unrealistic Curve Detector). Let the training data be the realistic data. Let the test data
be data to be check for unrealistic scenarios.

1. Apply preprocessing method standardisation over the tenors to the data.

2. Train the standard autoencoder Model 7.2 with k = 2 on the training data.

3. Encode and then decode the test data using the autoencoder.

4. For each curve in the test set, compute the mean squared error between the curve, and the
curve after applying: preprocessing, encoding, decoding and undoing the preprocessing.

5. For a large enough SMAPE the curve is labeled as unrealistic.

In Fig. 11.1 the futures time-series of WTI NYMEX is shown, with the associated SMAPE value for
the curves shown in grey (scale on the right of the graph). The mean SMAPE value is 0.0074, with
standard deviation 0.0039, minimum 0.0022, and maximum 0.026. Examining the 3d-plot shown
in Fig. 2.3a no inconsistencies in the data can clearly be seen. The peaks in the SMAPE may be
due to the training set not covering particular futures curves appearing in the test set, or due to the
autoencoder having more difficulty encoding some curves compared to others. The highest SMAPE
value of 0.026 is still small when compared with the SMAPE values of unrealistic curves that are
shown in Fig. 11.2.

In Fig. 11.2, the curves are all self-generated and they do not originate from the available time-series
data. The first 10 curves are constant priced curves, the next 8 curves are uniformly randomly
distributed over a number of ranges, the next 7 curves are linearly upward sloping, and last 7 curves
are linearly upward sloping. Apply Model 11.1 to these fake curves and examine the SMAPE values
produced.

From the constant curves, for the curves priced very close to $0 a high SMAPE value is returned, this
makes sense because the training data does not have any curves priced close to $0. For constant curves
priced $50 and higher the SMAPE value is small, and with respect to Fig. 11.1 would correspond
to realistic curves. From the constant curves with jump, the curve with a jump from 100 to 150 has
the lowest SMAPE value of 0.081, but this is still more than 3 times the worst SMAPE value from
the test set. All the uniformly random curves perform badly and have a very high SMAPE score,
this is exactly what is expected. The linearly increasing curves that operate over a too large a range
have high SMAPE scores and the same occurs for the linearly decreasing curves, this is again what is
expected, since curves in the training sets have prices of the long end not extremely far from prices of
the short end.
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Figure 11.1: Detecting unrealistic scenarios on the test set, WTI NYMEX. The price
axis of the futures time-series is shown on the left-hand size corresponding to the graph
in red-blue. The realistic nature of the data, as a SMAPE score, is shown as the grey
line with the axis on the right-hand side. The autoencoder is chosen as Model 7.2 with a
latent dimension of k = 2. The preprocessing method chosen is standardisation over the
tenors. The futures time-series is shown as a 2d representation where each futures curve
is projected onto the x-y plane with the colour representing the maturity. The short end is
shown in red and the long end (with a maturity of 4.3 years) is shown in blue. For each
futures curve the associated SMAPE value corresponding to how realistic the curve is, is
shown as the grey line.

From the results in Figs. 11.1 and 11.2 it can be concluded that Model 11.1 works well in general
at detecting unrealistic curves. The SMAPE score gives a good indication on how realistic a curve
is. For large SMAPE values, above 0.1 for instance, it is likely that these refer to unrealistic curves.
For SMAPE values in the range of 0.3-0.1 it is more difficult to say with certainty whether a curve is
unrealistic, however it does give an indication that the curve may have some unrealistic characteristics.
One limitation of the model as mentioned previously, is that it cannot take into account the price
movement over the time-series but only the shape of the futures curves.
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Figure 11.2: Fake data presented similarly to in Fig. 11.1. Fake curves with standardi-
sation over tenors to show how well the autoencoder performs on unrealistic data. The
curves are shown as a 2d representation. The first 10 points correspond to constant priced
curves. The next 8 curves are uniformly randomly distributed. The next 7 curves are
linearly upward sloping, and the last 7 curves are linearly downward sloping.

Type Range SMAPE

Constant 5 1.2
Constant 10 0.83
Constant 20 0.38
Constant 50 0.093
Constant 70 0.06
Constant 100 0.041
Constant 150 0.082
Constant 200 0.06
Constant 250 0.053
Constant 300 0.025
Constant with jump 50, 150 0.25
Constant with jump 100, 150 0.081
Constant with jump 100, 200 0.15
Uniformly random [0,10] 1.2
Uniformly random [10,70] 0.30
Uniformly random [0,100] 0.55
Uniformly random [100,200] 0.22
Uniformly random [200,300] 0.10

Type Range SMAPE

Uniformly random [0,200] 0.64
Uniformly random [0,250] 0.60
Uniformly random [0,300] 0.52
Linearly increasing [0,100] 0.34
Linearly increasing [50, 150] 0.057
Linearly increasing [100, 200] 0.029
Linearly increasing [150, 250] 0.026
Linearly increasing [200, 300] 0.026
Linearly increasing [0,200] 0.25
Linearly increasing [0,300] 0.35
Linearly decreasing [100,0] 0.26
Linearly decreasing [150, 50] 0.052
Linearly decreasing [200, 100] 0.039
Linearly decreasing [250, 150] 0.028
Linearly decreasing [300, 200] 0.022
Linearly decreasing [200,0] 0.31
Linearly decreasing [300,0] 0.50

Table 11.1: The data shown in Fig. 11.2 as a table. All rows in bold have a SMAPE of 0.1 or higher,
indicating that it is clearly unrealistic.
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12 Conclusion and Remarks

This thesis was written in co-operation with a large Dutch bank. The findings in this paper give them a
solid overview of some of the most popular neural network models with direct applications to futures
time-series data. The research gives a basis for techniques that worked well and others that are more
difficult to implement, require further tuning, or are shown not to be useful. Moreover, it provides a
starting point for further research into the application of neural networks on time-series data. Where
some models give successful results, such as the performance improvement of using the GAN model
over AMM, adjustments can still be made. The difficulty in applying more complex models such as
RNNs and GAIN are shown, and although not usable in their current state, they provide a starting
point for further development. The Unrealistic Curve Detector (Model 11.1) would be useful for the
bank to filter incoming time-series futures data. The model can easily be trained on other products as
well, which is one of the benefits of a neural network model.

The GAN models in Section 8 perform better than the benchmark two-factor mean-reverting Andersen
Markov model. The AMM has a SMAPE mean of 0.26 and a standard deviation of 0.15 under the
test set, while the GAN model using standardisation over the tenors, autoencoder and GAN-CONV
as shown in Table 8.2 has a SMAPE mean of 0.083 with standard deviation of 0.01. In further
research the GAN model could be used to account for interrelationships between market variables.
Up to this point, the data fed into the GAN has been a d-dimensional encoded time-series of a
single commodity. As mentioned in Section 2.3, a different method of splitting the datasets into
training, validation and test sets could be chosen. For example, the first 3/4 of each dataset could be
treated as training data, the next 1/8 as validation data and the last 1/8 as test data. This would have
allowed learning of the interrelationships in the different available products. Instead of training the
GAN models in Section 8 on a single encoded commodity, the GAN could be trained on multiple
commodities simultaneously. This has limitations when the number of commodities that are simulated
simultaneously increases in the same manner that the GANs cannot handle encoded data with the
size of the latent dimension above four. The reasons for not training GANs on encoded data with
k > 4 is because these would have taken large amounts of time to train. For d much larger, other
methods for reducing the computational complexity of the training task would need to be considered.
One option would be to use something other than dense layers, for example convolutional layers, as
seen before, to reduce the size of the network. Another option may be to apply dimension reduction
techniques to multiple commodities simultaneously.

There is a new model called GAN-FD that promises better results for time-series simulation [Zhou
et al. 2018]. The model is very similar to the models covered in Section 8, with the addition of
incorporating the direction of the price movement in training. The motivation behind this is that the
direction of the price is very important in trading. The adjustment in the model requires only the
loss function of the generator to be adjusted to penalise simulations where the price is moving in the
wrong direction. Although the paper states that the model benchmarked against various classical
models performs well, there remains to be some skepticism because the day-to-day price direction is
usually quite random, and therefore not be a useful indicator in the model.

The GAIN model that is trained to fill in missing values in time-series data is examined in Section 10.
It was found that although the method is capable of filling missing values, they are usually far from
the true values and introduce a lot of noise into the time-series. With more attention to the model, it
may produce better results. In theory, once the missing values have been filled, methods in Section 8
to make simulations of the time series can be applied. It would be interesting to combine these models
such that simulations from time-series with missing values can be made without first having to fill in
the missing values. This could be achieved by allowing the conditional sequence of the GAN model
to contain missing values. The problem is that filling in missing values may have some bias factor,
and this will be incorporated in the simulations made from the time-series with filled missing values.
By directly being able to simulate from time-series data with missing values, this possible bias would
not affect the simulations.

In Section 11 an autoencoder model that can detect unrealistic scenarios in individual futures curves
is examined. The method can successfully detect the difference between realistic data from the
historical data available and purposely made unrealistic data. An interesting extension of this model
would be to also factor in unrealistic movement between futures curves over the time-series. This
could be done by incorporating a windowed autoencoder (Section 7.4).
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A Mathematical Concepts

Some mathematical concepts are introduced that are used in the body of the thesis, most importantly
in Sections 4 and 5.

A.1 Notation

Notation that is used in this paper is introduced. The distribution p can refer to different distributions
based on the context, for example p(x) and p(z). The p(·) can refer to the probability distribution or
the density function. The true distribution that the data is sampled from is referred to as ptrue and the
empirical probability distribution from the data is pd. The probability distribution of the model is
referred to as pmodel(x;θ) or pθ(x), where θ are the parameters of the model.

A.2 Information Theory

Shannon’s entropy gives a measure of the amount of uncertainty in a random variable x given its
distribution p(x).
Definition A.1 (Entropy). The entropy of a probability mass function p is

H(p) := −Ex∼p [log p(x)] .

The entropy is always non-negative, H(p) ≥ 0. The entropy H is maximal when all values that the
random variable x can take are equally probable. For X a random variable with continuous density
function f , the continuous entropy is defined as

H(X) := −
∫

f(x) log f(x) dx.

The same properties as for the discrete entropy do not apply to the continuous entropy. In the
continuous case, distributions can have negative entropy.

The cross-entropy can be seen as the expected number of bits (when using log2) required to encode
random variable x when a distribution q is used while the true distribution of the data is p.
Definition A.2 (Cross-Entropy). The cross-entropy between two probability distributions p and q
over the same probability space is

H(p, q) := −Ex∼p [log q(x)] .

The Kullback-Leibler divergence is defined.
Definition A.3 (Kullback-Leibler). For continuous distributions with densities p and q defined on
the same probability space, the Kullback-Leibler divergence from p to q is given by

KL(p||q) :=
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx

= Ex∼p(x)

[
log

(
p(x)

q(x)

)]
,

with p(x)
q(x) =∞ if p(x) > 0 and q(x) = 0, and with 0

0 =: 0.

The Kullback-Leibler divergence is always non-negative, KL(p||q) ≥ 0 for all p, q. The Kullback-
Leibler divergence can be defined in terms of entropy and cross-entropy as

KL(p||q) = H(p, q)−H(p) ≥ 0.

Note H(p, q) ≥ H(p) ≥ 0 since H(p) ≥ 0. The Kullback-Leibler divergence can thus be seen as
the relative entropy of p with respect to q. If p is fixed, then the cross-entropy and KL divergence
is equal up to the additive constant H(p). Minimising the cross-entropy w.r.t. q is then equivalent
to minimising the KL divergence. In Bayesian terms, KL(p||q) can be seen as the information
gained when beliefs from the prior probability distribution q is updated to the posterior probability
distribution p.
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Lemma A.1. Let p(x) ∼ N(µ1, σ
2
1) and q(x) ∼ N(µ2, σ

2
2). Then a well known result is

KL(p||q) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.

For p(x) ∼ N(µ, σ2) and q(x) ∼ N(0, 1) it follows that

KL(p||q) = 1

2

(
µ2 + σ2 − log σ2 − 1

)
.

A.3 Bayesian Statistics

Consider a model providing a joint probability distribution for z and x. The joint probability density
can be written as a product of the prior distribution p(z) and the sampling distribution p(x|z). Namely

p(z,x) = p(z)p(x|z).

Conditioning on the known value of the data x, using Bayes’ rule, gives the posterior density

p(z|x) = p(z,x)

p(x)
=

p(z)p(x|z)
p(x)

. (7)

The marginal distribution of x, also called the prior predictive distribution, is

p(x) =

∫
p(x, z)dz =

∫
p(z)p(x|z)dz. (8)

Let x̃ be unknown. Given x the prediction for x̃, called the posterior predictive distribution, is

p(x̃|x) =
∫

p(x̃, z|x)dz =

∫
p(x̃|z,x)p(z|x)dz =

∫
p(x̃|z)p(z|x)dz

where the last equality follows under the assumed conditional independence of x and x̃ given z
[Gelman et al. 2013].

A.4 Maximum Likelihood Estimation

Usually the parameters θ are tuned such that pmodel(·;θ) is as close as possible to pd and thus obtain
an estimate for ptrue. For a good estimate of pd, the distribution pd should lie in, or be close to the
family given by pmodel(·;θ) over θ.

Theorem A.2. Let X = {x(1), . . .x(m)}. Let pd be the empirical distribution of X. Assume the x(i)

are independently distributed. Given a family of distributions {pmodel(·; θ) | θ ∈ Θ}, the maximum
likelihood finds the parameter θ that maximises the likelihood function pmodel(θ;x). The estimator
for θ is defined as

θML := argmax
θ

pmodel(x; θ)

= argmax
θ

m∏
i=1

pmodel(x
(i); θ)

= argmax
θ

m∑
i=1

log pmodel(x
(i); θ)

= argmax
θ

Ex∼pd
log pmodel(x; θ)

= argmax
θ

−H(pd(x), pmodel(x; θ)).

Thus maximising the likelihood corresponds to minimising the cross-entropy between pd and pmodel.

A.5 Variational Inference

Variational inference is used to approximate posterior densities, and is an alternative to Markov chain
Monte Carlo (MCMC). Using the Metropolis-Hastings method [van Es 2017], which is a type of
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MCMC method, the distribution p(z|x) can be estimated given that sampling from p(z) and p(x|z)
can be done. This is useful when the integral in the denominator is intractable in

p(z|x) = p(z)p(x|z)∫
p(z)p(x|z)dz

∝ p(z)p(x|z).

Since p(z)p(x|z) is proportional to the desired distribution p(z|x), the Metropolis Hastings algo-
rithm can be used. Variational inference is used for large datasets or complex models since it can
approximate the posterior distribution faster than with MCMC, however MCMC has asymptotic
consistency which is not guaranteed with variational inference [Blei et al. 2017].

To find an estimate for the posterior distribution p(z|x) and for p(x) can be difficult. Consider
Bayes’ theorem in Eq. (7), finding the denominator p(x) can be hard since the marginal distribution
in Eq. (8) can be difficult to compute. Let D be a family of distributions q(z) which are simpler
than the posterior but can be good approximations for it. To find q∗ ∈ D such that q∗(z) is the best
approximation to p(z|x) in D, the following steps are taken. The Kullback-Leibler divergence of p
from q is most commonly chosen to measure how different p is from q. Using the Kullback-Leibler
divergence

q∗(z) = argmin
q∈D

KL(q(z)||p(z|x)).

Then

Since p(x) is a constant w.r.t. to q(z), minimising KL(q(z)||p(z|x)) corresponds to maximising

L(q) := −KL(q(z)||p(z)) +Eq(z) [log (p(x|z))]

where L(q) is called the evidence lower bound. Substituting L into ?? and rearranging for log p(x)
gives

log p(x) = KL(q(z)||p(z|x)) + L(q).
Since log p(x) is fixed with respect to q, maximising L(q) minimises KL(q(z)||p(z|x)). Since
KL(q(z)||p(z|x)) is non-negative, the lower bound log p(x) ≥ L(q) is attained. The problem is
reduced to maximising L(q) over all probability distributions q ∈ D. This is the method of variational
inference. Variational inference is used in the variational autoencoder (Section 5.1.2).

A.6 Reparametrisation Trick

The general setting is that something of the following form needs to be computed

∇θEx∼qθ [f(x)] .

This can be rewritten as

∇θ

∫
qθ(x)f(x) dx =

∫
qθ(x)

qθ(x)
f(x)∇θqθ(x) dx

= Ex∼qθ

[
f(x)

1

qθ(x)
∇θqθ(x)

]
= Ex∼qθ [f(x)∇θ log(qθ(x))]

Unfortunately an empirical estimate of f(x)∇θ log(qθ(x)) to estimate ∇θEx∼qθ [f(x)] can be of
high variance [Kingma et al. 2013; Paisley et al. 2012]. The problem is that rare values of x from qθ(x)
maybe be essential in ∇θEx∼qθ [f(x)]. One method to address this is called the reparametrisation
trick.
Lemma A.3 (Reparametrisation trick). Rewrite qθ as a function g(θ, ε) of θ and a random variable
ε ∼ p(ε) that does not depend on θ. Assume qθ satisfies the conditions outlined in [Kingma et al.
2013]. Then x ∼ g(θ, ε), giving

∇θEx∼qθ [f(x)] = ∇θEε∼p [f(g(θ, ε))]

= Eε∼p [∇θf(g(θ, ε))] .

With the reparametrisation trick, the earlier problems are avoided since the distribution p does not
depend on θ.
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Example A.1. Let qθ = N(θ, 1) and x ∼ qθ(x). Suppose one wants to compute ∇θEx∼qθ [f(x)].
With the reparametrisation trick, the distribution under which the expectation is taken can be rewritten
such that it is independent of parameter θ. Let p(ε) = N(0, 1) and ε ∼ p(ε). Now x ∼ θ + ε and

∇θEqθ [f(x)] = ∇θEε∼p[f(θ + ε)]

= Eε∼p[∇θf(θ + ε)].

Introduced in Kingma et al. [2013, Section 2.4], the reparametrisation trick is needed to backpropagate
through a random node and this will be used for the variational autoencoder (Section 5.1.2).
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B Andersen Markov Model

Let W1,W2 be independent Brownian motions under the risk-neutral measure Q. The forward prices
are determined by the SDE in Eq. (1). The seasonality and drift terms are ignored by setting a(T ) = 0
and µ(t, T ) = 0. The model written in vector form

dF̂ (t, T )

F̂ (t, T )
=

(
η1e

κ(T−t)+η∞

η2e
−κ(T−t)

)>

d

(
W1(t)
W2(t)

)
= σ(t, T )>dW (t)

where

σ(t, T ) := α(t)β(T ), α(t) :=

(
η1e

κt η∞
η2e

κt 0

)
, β(T ) :=

(
e−κT

1

)
, W (t) =

(
W1(t)
W2(t)

)
.

When the seasonality adjustment a(T ) = 0, then σ(t, T ) is a function of only time to maturity T − t
instead of calendar time t and time of maturity T separately. The function σ(t, T ) can then be written
as σ(T − t). This is called volatility term structure stationarity.

Define

x(t) :=

∫ t

0

α(u)>dW (u)

y(t) :=

∫ t

0

α(u)>α(u)du,

with x(0) = y(0) = 0. Note σ(t, T ) can be written in the form σ(t, T ) = α(t)β(T ). Then by Itô’s
formula

d ln(F̂ (t, T )) =
1

F̂ (t, T )
dF̂ (t, T )− 1

2

1

(F̂ (t, T ))2
d
〈
F̂ (t, T )

〉
= σ(t, T )>dW (t)− 1

2

1

(F̂ (t, T ))2

(
F̂ (t, T )σ(t, T )>

)2
dt

= (α(t)β(T ))>dW (t)− 1

2

(
(α(t)β(T ))>

)2
dt.

Then

ln(F̂ (t, T )) = ln(F̂ (0, T )) +

∫ t

0

(α(u)β(T ))>dW (u)− 1

2

∫ t

0

(
(α(u)β(T ))>

)2
du.

Thus

F̂ (t, T ) = F̂ (0, T ) exp

(
β(T )>x(t)− 1

2
β(T )>y(t)β(T )

)
, T ≥ t. (9)

Writing out x(t) = (x1(t), x2(t))
> gives

dx1(t) = η1e
κtdW1(t) + η2e

κtdW2(t),

dx2(t) = η∞dW1(t).

Perform the following change of variables on x(t)

z1(t) := e−κtx1(t), z2(t) := x2(t),

with z1(0) = z2(0) = 0. By integrating

z1(t) = z1(0)e
−κt +

∫ t

0

e−κ(t−s)η1dW1(s) +

∫ t

0

e−κ(t−s)η2dW2(s)

=

∫ t

0

e−κ(t−s)η1dW1(s) +

∫ t

0

e−κ(t−s)η2dW2(s)

= η1Y1(t) + η2Y2(t),

z2(t) =

∫ t

0

η∞dW1(s) = η∞W1(t),
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where Yi(t) =
∫ t

0
e−κ(t−s)dWi(s). The Yi(t) are Ornstein-Uhlenbeck processes with mean reversion

speed κ, no drift component, and volatility 1.

Writing out y(t) is straightforward, and plugging y(t) and x(t) into Eq. (9) gives Andersen 2008[Eq.
(1.122)]

ln F̂ (t, T ) = ln F̂ (0, T ) +
(
z1(t)e

−κ(T−t) + z2(t)
)
− µ′(t, T ), (10)

where the drift term µ′(t, T ) is defined as

µ′(t, T ) =
1

2
e2a(T ) e

−2κt
(
e2κt−1

(
η21 + η22

)
+ 4η1η∞e−κT

)
(eκt − 1) + 2η2∞tκ

2κ
.

The variables z1(t) and z2(t) are written such that they can easily be simulated, allowing a discrete
simulation for F (t, T ) to be made. For given t and δ define the increments

I1(t) := z1(t+ δ)− e−κδz1(t) =

2∑
i=1

ηi

∫ t+δ

t

e−κ(t+δ−s)dWi(s), (11)

I2(t) := z2(t+ δ)− z2(t) = η∞(W1(t+ δ)−W1(t)). (12)

Using the Ito isometry

Var(I1(t)) =

2∑
i=1

η2i e
−2κ(t+δ)

∫ t+δ

t

e2κsds = (η21 + η22)
1

2κ
(1− e−2κδ).

By Gaussian increments of a Wiener process

Var(I2(t)) = η2∞δ.

Using the Ito isometry

cov(I1(t), I2(t)) = E [I1(t)I2(t)] = η∞η1E

[
(W1(t+ δ)−W1(t))

∫ t+δ

t

e−κ(t+δ−s)dW1(s)

]

+ η∞η2E

[
(W1(t+ δ)−W1(t))

∫ t+δ

t

e−κ(t+δ−s)dW2(s)

]

= η∞η1E

[∫ t+δ

t

dW1(s)

∫ t+δ

t

e−κ(t+δ−s)dW1(s)

]

+ η∞η2E

[∫ t+δ

t

dW1(s)

]
E

[∫ t+δ

t

e−κ(t+δ−s)dW2(s)

]

= η∞η1E

[∫ t+δ

t

e−κ(t+δ−s)ds

]

= η∞η1
1

κ
(1− e−κδ).

The correlation is then given by

ρ :=
cov(I1(t), I2(t))√

Var(I1(t))Var(I2(t))
=

η1√
η21 + η22

1− e−κδ

κ
√
δ

(
1− e−2κδ

2κ

)− 1
2

.

Using this, the increments can be written as

z1(t+ δ) = e−κδz1(t) +
√
Var I1(t)

(
ρZ1 +

√
1− ρ2Z2

)
z2(t+ δ) = z2(t) +

√
Var I2(t)Z2,

where Z1, Z2 are i.i.d. standard normal variables.

The number of business days in a year is approximately 252. The time increment is set to one
business day, giving the δ value of δ = 1/252. Assume that the values for parameters κ, η∞, η1 and
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η2 are known. Given that z1(0) = z2(0) = 0, the z1(t), z2(t) can be simulated for discrete steps
0, δ, 2δ, 3δ, .... The F (t, T ) can be simulated using Eq. (10).

The parameters κ, η1, η2, and η∞ are calibrated to match the covariance structure of the historical
time-series of futures curves.

Let the tenors Ti be durations. The choice for T1 = 0, T2 = 30, T3 = 60, ... where the durations
are in days is made, where 30 days represents one month. The Ti are therefore not dates. Note that
F (t, Ti) = F̂ (t, t+ Ti), where t+ Ti can be considered as a date.

Define log-returns as

ITi
:= ln(F̂ (t+ δ, t+ Ti + δ))− ln(F̂ (t, t+ Ti + δ)).

This is the same as writing

ITi
= ln (F (t+ δ, Ti + δ))− ln (F (t, Ti + δ)) .

Let µ′ = µ′(t, t+ Ti + δ)− µ′(t+ δ, t+ Ti + δ) it follows from Eq. (10) that

ITi
=
(
z1(t+ δ)e−κ(t+Ti+δ−(t+δ)) + z2(t+ δ)

)
−
(
z1(t)e

−κ(t+Ti+δ−t) + z2(t)
)
+ µ′

= e−κTi(z1(t+ δ)− e−κδz1(t)) + (z2(t+ δ)− z2(t)) + µ′

= e−κTiI1(t) + I2(t) + µ′,

where I1 and I2 defined in Eqs. (11) and (12) respectively. The covariance of log-returns is given by

cov(ITi , ITj ) = e−κTi−κTj Var(I1(t)) + Var(I2(t))

+ (e−κTi + e−κTj ) cov(I1(t), I2(t))

= e−κTi−κTj (η21 + η22)
1− e−2κδ

2κ
+ η2∞δ

+ (e−κTi + e−κTj )
η1η∞
κ

(1− e−κδ).

Note that cov(ITi
, ITj

) is independent of t.

Consider historical prices F (ti, Tj) for dates t1, ..., tm, with ti− ti−1 = δ, and tenors T1, ..., Tn. Let
x be the ((m− 1)× n) matrix of historical log-returns, with tenors T1, ..., Tn and times t1, ..., tm−1,
then the covariance is given by h = Cov(x>) where the times t1, ..., tm−1 refer to realisations.
The h is then a (n × n) matrix. The parameters κ, η1, η2, η∞ are found by tuning the theoretical
covariance to match the covariance of the historical data by minimising the mean squared error value
function

V (κ, η1, η2, η∞) =

n∑
i,j=1

(cov(ITi , ITj )− hij)
2.

The volatility parameters η1 and η2, and the long-term volatility parameter η∞ are difficult to interpret,
however these can be used to specify an alternative parameterisation Wiemer 2015[7.1.2]. Let σ0

be the short-term volatility, σ∞ be the long-term volatility, and ρ∞ be the correlation between them.
Then

η1 = −σ∞ + ρ∞σ0,

η2 = σ0

√
1− ρ2∞,

η∞ = σ∞.

The initial values for the minimisation can be chosen as

κ = 0.5, σ0 =
√
h11, σ∞ =

√
hnn, and ρ∞ =

h1n√
h11hnn

.

The V (κ, η1, η2, η∞) can be minimised by using a numerical method, for example the Broy-
den–Fletcher–Goldfarb–Shanno Fletcher 1987 quasi-Newton method.
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C Code

All the code is written in Python and can be found on the Github repository Ruiz 2019 with instructions
on how to set up the project. Note that the time-series data of oil futures is not included because
the data is not publicly available. The data was attained in co-operation with a large Dutch bank.
The code for the neural networks is written using the Keras library and the Tensorflow library. The
code for the standard autoencoder, variational autoencoder and adversarial autoencoder, is based on
the examples from the Keras website Chollet 2016. The code for the GAN, conditional GAN and
Wasserstein GAN is based on examples from Linder-Norén 2019. The code for the GAIN model is
based on the Tensorflow code from Yoon 2019. The code for the LSTM model is based on the code
from Tonin 2019.
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Popular Summary

In financial risk management, being able to simulate futures products is important to calculate
certain risks. Futures are financial contracts between a buyer and a seller to buy/sell an asset at a
predetermined time in the future for a fixed price. To do this, there exist mathematical models that
can simulate these products. These models have to be considered carefully and be made to fit the
type of product at hand. This requires expert knowledge with still the downside that certain features
that occur in the historical pricing data may be overlooked and not incorporated in the model. Neural
networks are introduced to offer solutions to this problem. They are functions with many parameters
that can be trained on historical data and learn patterns in the data. They are much more malleable
compared to classical models. They can be easily retrained on new historical data without having to
recreate the model itself to include new features seen in the data. In a financial institution, there is a
reliance on a number of data sources to provide the historical data. The data can sometimes contain
missing values or contain pricing inconsistencies. It is a time consuming process requiring manual
work to find these errors. A neural network is shown to be capable of learning what realistic data
looks like and thereby discover such errors. In carrying out these tasks, an introduction to neural
networks is given, together with an examination of the specialised types of neural networks required.
In order to train the networks on the historical time-series futures data available, the data has to
be prepared by transforming it into a format that can be understood by the neural network. This
data preparation can be done using a multitude of different methods where the choice affects the
performance of the simulations. Research is carried out into which type of data preparation coupled
with which specialised neural network performs best at simulating time-series data and detecting
unrealistic data. The best neural network model found for simulating time-series of futures data
performs three times better compared to the benchmark Andersen Markov model.
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